素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 レス栞

53: 2022/01/02(日)12:57:00.79 ID:ShmIZUMk(1/2) AAS
>>46
24で割れるぞ
そういうスレがちょっと前に立ってた
316: 2023/12/31(日)21:27:12.79 ID:ZQRjm/0R(7/11) AAS
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないとの仮定が正しいとき(y'≠y>0)

ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
+(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
+(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))
+5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
+5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))をA*e^(i*B)にかえて
AがX≠1/2のとき0にならないことを証明すれば実部が1/2のみであることになる
320: 2023/12/31(日)22:59:36.79 ID:ZQRjm/0R(11/11) AAS
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=0

ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*(e^(i*-y*ln(n))/1^x-e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-e^(i*-y*ln(n))/4^x+・・・)
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x-2*e^(i*-y*ln(n))/3^x+e^(i*-y*ln(n))/4^x+・・・)
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-3*e^(i*-y*ln(n))/4^x+・・・)

1/(1-1/2^(x-1+i*y))←この項目を無視して
省5
346: 2024/01/04(木)00:06:08.79 ID:HQkE/6B8(1/5) AAS
e^(i*2π*(a/(2)^3+b/(3)^3+c/(5)^3))=e^(i*2π*(x3/(2*3*5)^3))
1>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7^2/(2*3*5)^3))のとき
cos(2π*(7^2/(2*3*5)^3))>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7*11/(2*3*5)^3))
x3=素数 a≠2,b≠3,c≠5

e^(i*2π*(x1/(3*5^2)^3+x2/(2*5^2)^3))=e^(i*2π*(x3/(2*3*5)^3))
x1 = 8, x2 = -7, x3 = -1 
e^(i*2π*(8/(3*5^2)^3-7/(2*5^2)^3))=e^(i*2π*(1/(2*3*5)^3))
省2
365: 2024/01/07(日)16:11:50.79 ID:SsbMX1Ts(7/12) AAS
P(n)=n番目の素数

(Π(k=1〜n)(1-1/P(k))*P(n)^2)+(n-1)≒P(n)^2未満の素数の個数(誤差±1弱)

(1*2)*5^2/(2*3)+1 =9.33 (5^2未満の素数の個数=9個)
(1*2*4)*7^2/(2*3*5)+2 =15.06 (7^2未満の素数の個数=15個)
(1*2*4*6)*11^2/(2*3*5*7)+3 =30.65 (11^2未満の素数の個数=30個)
(1*2*4*6*10)*13^2/(2*3*5*7*11)+4 =39.11 (13^2未満の素数の個数=39個)
(1*2*4*6*10*12)*17^2/(2*3*5*7*11*13)+5 =60.43 (17^2未満の素数の個数=61個)
省5
408: 2024/01/15(月)01:07:56.79 ID:Z9hJzEUI(2/3) AAS
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5)))=7 ←7を式に入れる
(2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+2/3-2/5+2/7)))=11 ←11を式に入れる
(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5-8/7+2/11)))=13 ←13を式に入れる 
1からn番目の素数でn+1番目の素数を表現するとき分子は±2^kになる可能性がある
493: 2024/02/08(木)23:16:02.79 ID:o/zZo4Gq(2/3) AAS
3*5未満の3,5を素因数に持たない数をすべて足して15で割ると余りが0になる(1番目から含む必要なし)

1+2+4+7+8+11+13+14 mod 15=0
545: 2024/08/21(水)19:45:21.79 ID:+5yk/bCX(1) AAS
>>114
録画もう無いから確認出来ないけど同情はするって言うの100%
画像リンク[png]:i.imgur.com
649: 2024/10/13(日)22:52:23.79 ID:e+mQWWbM(1) AAS
1 mod 2=1
3 mod 4=-1
105 mod 8=1
2027025 mod 16=1
191898783962510625 mod 32=1
112275575285571389562324404930670903477890625 mod 64=1
164749260436028300985882145742271020352352323765318815064452725844663571025238239569133424206748199462890625 mod 128=1
省1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.417s*