素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
80: 2022/10/29(土)13:21:39.76 ID:7zQTjzXt(2/3) AAS
6m±1って、「2でも3でも割れない整数」を式で表したものだよね。
つまり整数の全体を「2,3」を使って篩にかけてるわけ。
とすれば、篩として使う素数を増やせばいいんじゃないか?
とか、そもそも篩の方法をもっと洗練させることはできないか?
という考えは自然に浮かぶ。素朴な篩としては
エラトステネスの篩やルジャンドルの篩があるが
ブルンは今日「ブルンの篩」と呼ばれる方法を編み出して
省4
213: 2023/12/11(月)18:40:31.76 ID:DDn3hfvp(1/2) AAS
((a^(n-1))+(a^n-a^(n-1)))*((b^(n-1))+(b^n-b^(n-1)))
aとbを素因数にもつ個数=(a^(n-1))*(b^(n-1))
bのみを素因数にもつ個数=(a^n-a^(n-1))*(b^(n-1))
aのみを素因数にもつ個数=(b^n-b^(n-1))*(a^(n-1))
aとbを素因数にもたない個数=(a^n-a^(n-1))*(b^n-b^(n-1))
(2*3)^2
aとbを素因数にもつ個数=6,12,18,24,30,36
省3
225: 2023/12/18(月)20:19:35.76 ID:G1nocuy9(1/2) AAS
cos(2pi*(7^2/(2*3*5)^2))>cos(2pi*((2*a+1)/2^2+(3*b+1)/3^2+(5*c+1)/5^2)) > cos(2pi*(7*11/(2*3*5)^2))
a = 2 n_1, b = 3 n_2 + 1, c = 5 n_3 + 1, n_1 element Z, n_2 element Z, n_3 element Z
a = 2 n_1, b = 3 n_2 + 2, c = 5 n_3, n_1 element Z, n_2 element Z, n_3 element Z
e^(i*2pi*((2*2+1)/2^2+(3*1+1)/3^2+(5*1+1)/5^2))=e^(i*2pi*(-59 )/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数
e^(i*2pi*((2*2+1)/2^2+(3*2+1)/3^2+(5*5+1)/5^2))=e^(i*2pi*(61)/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数
1>cos(2pi*(-59+30n)/(2*3*5)^2)>cos(2pi*(7^2/(2*3*5)^2))を満たすとき|-59+30n|=19,29,31は素数
1>cos(2pi*(61+30n)/(2*3*5)^2)>cos(2pi*(7^2/(2*3*5)^2))を満たすとき|61+30n|=31,29は素数
290: 2023/12/28(木)23:54:04.76 ID:/6JWP4pU(2/2) AAS
1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時)
約 P(m+1)^2*Π(1-1/P(k))+m 個の素数がある
1から+∞の間にはlim (m→∞) P(m+1)/ζ(1)+m=e^(ζ(1)/2)/ζ(1)+∞個の素数がある
432: 2024/01/21(日)16:54:06.76 ID:h+lG8rsE(8/12) AAS
(2^2*3*5*7*11+1)=4621は素数
(2*3*5*7*11)*((2^2*3*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
(2^2*3^2*5*7*11+1)=13861=83*167は非素数
(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1*83/2+2*83/3+3*83/5+1*83/7+1*83/11)mod1)=83=(2*3*5*7*11)*((1/2+1/3+4/5+6/7+6/11)mod1)
(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1*167/2+2*167/3+3*167/5+1*167/7+1*167/11)mod1)=167=(2*3*5*7*11)*((1/2+1/3+1/5+6/7+2/11)mod1)
(2*3*5*7*11)*((1*167/2+1*167/3+4*167/5+6*167/7+6*167/11)mod1)=1=(2*3*5*7*11)*((1*83/2+1*83/3+1*83/5+6*83/7+2*83/11)mod1)
479: 2024/02/03(土)20:57:50.76 ID:RnpFDdRt(4/11) AAS
2*3*5*7*(13^(2*3)*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(19^(2^2*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(101^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(997^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(2011^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*(13099^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
Π[k=1~n]p[k]=1からn番目の素数積
省4
595: 2024/09/14(土)22:46:45.76 ID:hE76C901(1/4) AAS
e^(i*2pi*1/30)*e^(i*2pi*7/30)*e^(i*2pi*11/30)*e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=1
(1+5+31+23)mod 42=-(13+17+19+25+29+11+37+41)mod 42
(1+31+23+17)mod 42=-(5+13+19+25+29+11+37+41)mod 42
(1+31+23+17+37)mod 42=-(5+13+19+25+29+11+41)mod 42
(1)mod 42=-(5+31+23+17+37+13+19+25+29+11+41)mod 42
1≦n<a^x*b^y*c^z
Σn=(a^x*b^y*c^z/2)*(a^x-a^(x-1))*(b^y-b^(y-1))*(c^z-c^(z-1))
省2
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.024s