素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
12: 2021/12/25(土)10:47:07.72 ID:Mb+8rzb8(4/9) AAS
{n?N|nは素数}
48: 2022/01/01(土)20:18:29.72 ID:fyg9XD4a(1) AAS
>>46
(6n±1)2-(6m±1)2 だからだよー
149: 2023/05/22(月)12:44:03.72 ID:1iNd55ue(3/3) AAS
円周と素数と角度には、いくつかの関係や法則が知られています。

1つの例として、素数定理と呼ばれる法則があります。素数定理は、ある正の整数 $x$ 以下の素数の個数 $π(x)$ と、$x$ に十分に近い値 $x/\ln x$ の関係を表すものです。この法則によれば、十分大きな $x$ に対して、素数の個数 $π(x)$ はおよそ $x/\ln x$ に等しくなると予想されます。

また、円周上に均等に分布する素数に関する問題にも興味が持たれています。具体的には、円周上に均等に分布する素数の個数や、その分布パターンに関する研究が行われています。

さらに、円周上に均等に分布する点の角度を求めるためのアルゴリズムとして、円周上の点を等間隔に区切る方法が知られています。この方法により、任意の数の点を円周上に均等に分布させることができます。

これらの関係や法則は、数学の分野である「解析数論」や「幾何学的位相学」などで研究されています。
167
(1): 2023/07/18(火)02:39:52.72 ID:2aiM4OLs(1) AAS
値が正になるときには、すべての素数をしかも素数だけ表す多変数の多項式系というものは
ずいぶん昔から知られているよ。
351: 2024/01/05(金)22:47:47.72 ID:J9agiAXK(1) AAS
1/(1-1/2^(1/2-1))*1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(1/2)))-2*(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/(2n)^(1/2)))=-1.46
(-Li_(1/2)(-(-1)^(1/3)) - Li_(1/2)((-1)^(2/3)) + sqrt(2) (Li_(1/2)(-(-1)^(1/3)) + Li_(1/2)((-1)^(2/3))))/((1 - sqrt(2)) (1 - sqrt(3)))≈-1.46035 + 0 i

1/(1-1/2^(1/2-1))*1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-3*(Σ(n=1〜∞)(-1)^(n-1)*1/(3n)^(1/2)))=-1.46
(sqrt(3) (sqrt(2) - 1) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/((1 - sqrt(2)) (1 - sqrt(3)))≈-1.46035

1/(1-1/2^(1/2-1))^2*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-2*(Σ(n=1〜∞)(-1)^(n-1)*1/(2n)^(1/2)))=-1.46
(-(sqrt(2) - 2) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/(1 - sqrt(2))^2≈-1.46035
472: 2024/01/31(水)13:39:20.72 ID:qNFnHH4o(1/2) AAS
2*3*5*7*11*(product[prime[k],{k,6,40}]^n(1/2+2/3+3/5+1/7+1/11)mod1)
2310未満の合成数の最大素因数では40番目の素数までしか存在しないため
6番目から40番目の素数をかければ高い確率で素数になる
623: 2024/09/29(日)14:03:30.72 ID:zrNEkg5o(9/12) AAS
(100-1/3-18/(299 + sqrt(89293)))^n+(18/(299 + sqrt(89293)))^n+1/3^nは満たさないため
あくまでも(e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))の形を満たすときのみ
642: 2024/10/06(日)23:47:05.72 ID:fimbC5jl(8/9) AAS
29^720m mod 510510*19=1
(1+N*(2*3*5*7*11*13*17*19))^(1/720)=31*43
691: 03/29(土)15:03:50.72 ID:AASfiNUA(3/3) AAS
table((2*3*5*7*11*13)*(((1/2)+(2^(3n)/3)+(1/5)+(6^(7n)/7)+(6^(11n)/11)+(3^(13n)/13)) mod1),n=1,50)
X={1, 4241, 28141, 6761, 24781, 21251, 5461, 6971, 14491, 14951, 13861, 15791, 2731, 20621, 6301, 25871, 19321, 18521, 19111, 28811, 25411, 20411, 16591, 2141, 10921, 9701, 841, 23141, 2941, 10331, 1, 4241, 28141, 6761, 24781, 21251, 5461, 6971, 14491, 14951, 13861, 15791, 2731, 20621, 6301, 25871, 19321, 18521, 19111, 28811}
0<X<30030=(2*3*5*7*11*13)
17<Xの素因数<√(30030)=173が存在してしまう可能性がある
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.043s