素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
138(1): 2023/04/12(水)07:30:38.71 ID:ToSsDT4v(2/2) AAS
リーマンゼータのオイラー積表示
ζ(s)=Π_{p:prime} (1-1/p^s)^{-1}
において、素数の集合を部分集合Sに制限すると
Π_{p∈S} (1-1/p^s)^{-1}
になるだけ。
ただし、無限集合のときはRe(s)>1で収束するが
Sが有限集合なら、Re(s)>0 としてよい。
省1
252: 2023/12/24(日)13:38:02.71 ID:JbDEdDB5(4/17) AAS
e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^14)/7^14))=e^((19 i π)/10173346092735)
e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^15)/7^15))=e^((13 i π)/71213422649145)
e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^16)/7^16))=e^((i π)/498493958544015)
e^(i*2pi*(1/2+1/3+1/5-floor((1/2+1/3+1/5)*7^17)/7^17))=e^((i π)/498493958544015)
P(n)=n番目の素数
Σ1/P(m)=1からn番目までの素数の逆数和
F(k)=e^(i*2pi*(Σ1/P(m)-floor((Σ1/P(m))*P(n+1)^k)/P(n+1)^k))
省1
402: 2024/01/14(日)02:01:49.71 ID:hK2Tvkd7(2/6) AAS
円を重ねて素数の個数を求める
((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1))*(11*7)/(2*3*5*7)=21.63 11*7=77未満の素数の個数=21個
((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1))*(13*11)/(2*3*5*7*11)=33.36 13*11=143未満の素数の個数=34個
((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1)*(13-1))*(17*13)/(2*3*5*7*11*13)=46.35 17*13=221未満の素数の個数=47個
494: 2024/02/08(木)23:17:46.71 ID:o/zZo4Gq(3/3) AAS
3*7未満の3,7を素因数に持たない数をすべて足して3*7で割ると余りが0になる(1番目から含む必要なし)
1+2+4+5+8+10+11+13+16+17+19+20 mod 21=0
504: 2024/07/06(土)23:43:07.71 ID:OGgqh9Cy(2/2) AAS
6n±1から過去の6n±1の倍数を除外したものが全て素数になるのかな。めんどくさいなー
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.024s