素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
185: 132人目の素数さん [sage] 2023/10/22(日) 11:17:08.67 ID:1rLOY4nu cos(2pi*(1-(1-(1-n/(2*3))*2*3)/(2*3)^5)) > cos(2pi*(25/(2*3)^5)) n = 7776 m, m element Z n = 27 (288 m + 1), m element Z n = 24 (324 m + 1), m element Z n = 18 (432 m + 1), m element Z n = 18 (432 m + 431), m element Z e^(i*2pi*(1-(1-(1-27/(2*3))*2*3)/(2*3)^5))=e^(-(11 i π)/1944) e^(i*2pi*(1-(1-(1-24/(2*3))*2*3)/(2*3)^5))=e^(-(19 i π)/3888) e^(i*2pi*(1-(1-(1-18/(2*3))*2*3)/(2*3)^5)) =e^(-(13 i π)/3888) e^(i*2pi*(1-(1-(1-18*431/(2*3))*2*3)/(2*3)^5)) =e^((23 i π)/3888) http://rio2016.5ch.net/test/read.cgi/math/1640355175/185
313: 132人目の素数さん [sage] 2023/12/31(日) 17:11:21.67 ID:ZQRjm/0R |ζ(x+i*y')-ζ(x+i*y)|=1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y) +5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2 1/2^(x+i*y')-1/2^(x+i*y)=2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2)) 1/3^(x+i*y')-1/3^(x+i*y)=2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2)) 1/4^(x+i*y')-1/4^(x+i*y)=2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2)) 5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1))) 5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5)) ζ(x+i*y')-ζ(x+i*y)≒2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2))+2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2))+2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2)) +5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1))) +5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5)) がx≠1/2のときy,y'をもたない(y≠y'>0) http://rio2016.5ch.net/test/read.cgi/math/1640355175/313
325: 132人目の素数さん [sage] 2024/01/01(月) 12:05:19.67 ID:7BKpZ/zg Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0 Σ1/(6n-4)^s+Σ1/(6n-2)^s-2*Σ1/(6n)^s=0 Σ1/(6n-5)^s+Σ1/(6n-4)^s+*Σ1/(6n-3)^s+Σ1/(6n-2)^s+Σ1/(6n-1)^s-5*Σ1/(6n)^s=0 Σ1/(6n-5)^s+Σ1/(6n-3)^s+Σ1/(6n-1)^s-7*Σ1/(6n)^s=0 ←これもs=1/2+i*yのときのみ満たす http://rio2016.5ch.net/test/read.cgi/math/1640355175/325
353: 132人目の素数さん [sage] 2024/01/06(土) 17:33:59.67 ID:MvCtGzfL e^(iπ)+1=0 e^(i*4π/3)+e^(i*2π/3)+1=0 e^(i*6π/4)+e^(i*4π/4)+e^(i*2π/4)+1=0 e^(i*8π/5)+e^(i*6π/5)+e^(i*4π/5)+e^(i*2π/5)+1=0 e^(iπ)=Σ(k=1〜n-1)e^(i*2π*k/n) (1<=k<=n-1) e^(iπ)=Σ(k=1〜2*3*5-1)e^(i*2π*k/(2*3*5)) http://rio2016.5ch.net/test/read.cgi/math/1640355175/353
446: 132人目の素数さん [sage] 2024/01/23(火) 14:19:08.67 ID:Tn7R0RHf (2*3*5*7*11)*((2*3*5*7*11+13^7)*(1/2+2/3+3/5+1/7+1/11)mod1)=1987 (2*3*5*7*11)*((2*3*5*7*11+13^49)*(1/2+2/3+3/5+1/7+1/11)mod1)=853 (2*3*5*7*11)*((2*3*5*7*11+13^7^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=13^3 (2*3*5*7*11)*((2*3*5*7*11+13^7^4)*(1/2+2/3+3/5+1/7+1/11)mod1)=13 (2*3*5*7*11)*((2*3*5*7*11+13^11)*(1/2+2/3+3/5+1/7+1/11)mod1)=937 (2*3*5*7*11)*((2*3*5*7*11+13^11^2)*(1/2+2/3+3/5+1/7+1/11)mod1)=13 (2*3*5*7*11)*((2*3*5*7*11+13^11^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=937 http://rio2016.5ch.net/test/read.cgi/math/1640355175/446
622: 132人目の素数さん [sage] 2024/09/29(日) 13:47:19.67 ID:daEjpvSH (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))* (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))* (e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))=1 (e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))^3 +(e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))^3 +(e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))^3=129 a*b*c=整数 a+b+c=整数の時、a^n+b^n+c^n=整数になる(a,b,cの変数の個数によらない) Π (k=1,∞) a(k)=整数、Σ(k=1,∞)=a(k)を満たすとき Σ(k=1,∞) a(k)^n=整数になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/622
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
2.123s*