素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 レス栞
194: 2023/10/22(日)14:35:28.61 ID:1rLOY4nu(10/11) AAS
cos(2pi*(1-((n/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) > cos(2pi*(29^2/(2*3*5*7*11*13*17*19*23)^7))
n = 864 (151588688860480401830821308882900152330122196839031250 m + 57736288309081718076562795675036302431140590123061457), m element Z
n = 350 (374207506215585906233798888213787804609215937339780000 m + 142526151711561726909000729894946758001444199618071711), m element Z
n = 69 (1898154017035580683794632041664141037872834464767000000 m + 722958740565892817654351528452628482616021302410508679), m element Z
n = 15 (8731508478363671145455307391655048774215038537928200000 m + 3325610206603106961210017030882091020033697991088339923), m element Z
n = 4 (32743156793863766795457402718706432903306394517230750000 m + 12471038274761651104537563865807841325126367466581274711), m element Z
e^(i*2pi*(1-((864*57736288309081718076562795675036302431140590123061457/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^(-(83 i π)/13752125853422782054092109141856701819388685697236915000000)
省3
202: 2023/11/26(日)00:48:12.61 ID:5ylX1SN5(3/3) AAS
cos(2pi*((2*a+1)/2^3-(3*b+2)/3^3-c/5^3-d/7^3+e/11^3+f/13)) > cos(2pi*(17^2/(2310)^3*1/13))
a = 4 n_1, b = 9 n_2, c = 5 (25 n_3 + 11), d = 343 n_4 + 114, e = 1331 n_5 + 1165, f = 13 n_6 + 11,
a = 4 n_1, b = 9 n_2, c = 125 n_3 + 11, d = 343 n_4 + 176, e = 1331 n_5 + 118, f = 13 n_6 + 6, cos(2pi*((2*4+1)/2^3-(3*9+2)/3^3-11/5^3-176/7^3+118/11^3+6/13)) =cos((71 π)/80121541500)
a = 4 n_1, b = 9 n_2, c = 125 n_3 + 92, d = 7 (49 n_4 + 34), e = 1331 n_5 + 402, f = 13 n_6 + 1,
a = 4 n_1, b = 3 (3 n_2 + 1), c = 5 (25 n_3 + 13), d = 343 n_4 + 103, e = 1331 n_5 + 751, f = 13 n_6 + 7,
a = 4 n_1, b = 3 (3 n_2 + 1), c = 125 n_3 + 28, d = 7 (49 n_4 + 46), e = 1331 n_5 + 183, f = 13 n_6 + 4,
264: 2023/12/24(日)23:54:35.61 ID:JbDEdDB5(16/17) AAS
表現できる素数は一定のはずなのでnの値によらず
約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*(2*11^2)/(2*3*5*7)^n個は一定になる
(2^2-2)*(3^2-3)*(5^2-5)*(7^2-7)*(2*11^2)/(2*3*5*7)^2≒55個
(2^3-2^2)*(3^3-3^2)*(5^3-5^2)*(7^3-7^2)*(2*11^2)/(2*3*5*7)^3≒55個
(2^4-2^3)*(3^4-3^3)*(5^4-5^3)*(7^4-7^3)*(2*11^2)/(2*3*5*7)^4≒55個
269: 2023/12/25(月)00:16:21.61 ID:cm14oBhI(4/19) AAS
(2^2-2^(1))*(3^2-3^(1))*(5^2-5^(1))*(7^2-7^(1))*(11^2-11^(1))*(13^2)/(2*3*5*7*11)^2≒35個
1から13^2の範囲内には39個の素数があるためほぼ等しい
(2^2-2^(1))*(3^2-3^(1))*(5^2-5^(1))*(7^2-7^(1))*(11^2-11^(1))*(13^2-13^(1))*(17^2)/(2*3*5*7*11*13)^2≒55個
1から17^2の範囲内には61個の素数があるためほぼ等しい
348: 2024/01/04(木)01:13:55.61 ID:HQkE/6B8(3/5) AAS
(3 4)^2 (3 5)^2 *C = (3 5)^2 x1 + ((3 4)^2 (-2 Pi x1 + 2 Pi x2 + I (3 5)^2 Log[E^(((2 I) Pi x1)/(4 5)^2 + ((2 I) Pi x2)/(3 5)^2)]))/(2 Pi)
32400 C = (16200 i log(e^((i π x1)/200 + (2 i π x2)/225)))/π + 81 x1 + 144 x2=0 ←n=2 a=3,b=4,c=5のときC=0のため3^2+4^2=5^2
(3 4)^3 (3 5)^3 *C = (3 5)^3 x1 + ((3 4)^3 (-2 Pi x1 + 2 Pi x2 + I (3 5)^3 Log[E^(((2 I) Pi x1)/(4 5)^3 + ((2 I) Pi x2)/(3 5)^3)]))/(2 Pi)
5832000 C - 918 x1 = 0 ←n=3 a=3,b=4,c=5のときC≠0のため3^3+4^3≠5^3
411: 2024/01/16(火)20:26:38.61 ID:CGru1Z9S(2/2) AAS
(2*3*5*7*11*13*17)/(2πi)*ln(e^(i*2π*(1/2+a/3+b/5+c/7+d/11+x/13+y/17)))=19
a,b,c,d,x,yに分母の素因数を持たない数を入れて式を満たす組み合わせは一通りだけある
433: 2024/01/21(日)17:44:01.61 ID:h+lG8rsE(9/12) AAS
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+ab)*(1/2+2/3+3/5+1/7+1/11)mod1)=ab
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+a)*(1/2+2/3+3/5+1/7+1/11)mod1)=a
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+b)*(1/2+2/3+3/5+1/7+1/11)mod1)=b
2*3*5*7*11+13*17=2531は素数
(2*3*5*7*11)*((1*13/2+2*13/3+3*13/5+1*13/7+1*13/11)mod1)=(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13
(2*3*5*7*11)*((1*17/2+2*17/3+3*17/5+1*17/7+1*17/11)mod1)=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1)=17
(2*3*5*7*11)*((1*13*17/2+2*13*17/3+3*13*17/5+1*13*17/7+1*13*17/11)mod1)=(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17
省10
677: 2024/11/12(火)19:42:38.61 ID:5PtRFVCd(1) AAS
prime[61]^2*product((1-1/prime(n)),n=1,60)≒7859.86 ←
primepi[prime[61]^2]=7842
prime[k+1]^2*product((1-1/prime(n)),n=1,k)≒prime[k+1]^2未満の素数の数
prime[k+1]/log(prime[k+1])≒prime[k+1]^2*product((1-1/prime(n)),n=1,k)
ζ(1)=lim[k→∞] 1/product((1-1/prime(n)),n=1,k)≒prime[k+1]*log(prime[k+1])=log((prime[k+1])^(prime[k+1]))
ζ(1)=∞=log(無限の素数^無限の素数)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.023s