素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
26: 132人目の素数さん [age] 2021/12/28(火) 14:17:41.53 ID:ssWwgjNQ 素数の倍数を計算しないと素数がわからない素数の数を知るには素数の倍数を計算する必要がある 素数は素数の近くにある http://rio2016.5ch.net/test/read.cgi/math/1640355175/26
47: 132人目の素数さん [] 2022/01/01(土) 20:07:59.53 ID:gDc9k5MT 3^2-2^2=5 http://rio2016.5ch.net/test/read.cgi/math/1640355175/47
142: 132人目の素数さん [sage] 2023/05/21(日) 01:40:00.53 ID:1J9WtyC7 2*3*5*7*11*13*17*19*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19) mod 30 =17 2*3*5*7*11*13*17*19*23*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23) mod 30 =1 2*3*5*7*11*13*17*19*23*29*31*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31) mod 30 =29 2*3*5*7*11*13*17*19*23*29*31*37*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37) mod 30 =23 2*3*5*7*11*13*17*19*23*29*31*37*41*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41) mod 30=13 2*3*5*7*11*13*17*19*23*29*31*37*41*43*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43) mod 30 =19 2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47) mod 30 =23 http://rio2016.5ch.net/test/read.cgi/math/1640355175/142
341: 132人目の素数さん [sage] 2024/01/03(水) 00:55:45.53 ID:mP/SslTt F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) m=5のとき1,1,1,1,-4のとき (Σ(n=1〜∞)(F(4))*1/n^(s)) =1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^s)) (Σ(n=1〜∞)(F(4))*1/n^(1/2))=1.805=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)+1/4^(1/2)-4/5^(1/2)+1/6^(1/2)+・・・ =1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2)))=1.805097444・・・ (Σ(n=1〜∞)(F(m-1))*1/n^(1/2))=1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(1/2))) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) http://rio2016.5ch.net/test/read.cgi/math/1640355175/341
447: 132人目の素数さん [sage] 2024/01/23(火) 14:26:29.53 ID:Tn7R0RHf (2*3*5*7*11)*((2*3*5*7*11+17^4)*(1/2+2/3+3/5+1/7+1/11)mod1)=19^2 (2*3*5*7*11)*((2*3*5*7*11+17^8)*(1/2+2/3+3/5+1/7+1/11)mod1)=961 (2*3*5*7*11)*((2*3*5*7*11+17^16)*(1/2+2/3+3/5+1/7+1/11)mod1)=1831 (2*3*5*7*11)*((2*3*5*7*11+17^32)*(1/2+2/3+3/5+1/7+1/11)mod1)=751 (2*3*5*7*11)*((2*3*5*7*11+17^64)*(1/2+2/3+3/5+1/7+1/11)mod1)=19^2 (2*3*5*7*11)*((2*3*5*7*11+17^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=293 (2*3*5*7*11)*((2*3*5*7*11+17^9)*(1/2+2/3+3/5+1/7+1/11)mod1)=167 (2*3*5*7*11)*((2*3*5*7*11+17^27)*(1/2+2/3+3/5+1/7+1/11)mod1)=503 (2*3*5*7*11)*((2*3*5*7*11+m^a^n)*(1/2+2/3+3/5+1/7+1/11)mod1) mに169より小さい素数、aに2,3,5,7,11のうちのいずれかの素数、nの値を変えると でてくる値Xが素数か、単一の素数の乗数になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/447
469: 132人目の素数さん [sage] 2024/01/28(日) 23:19:09.53 ID:po+iLZw6 2*3*5*(7*11*13^a*17^b*(1/2+2/3+3/5+1/7+1/11)mod1) ←a,bにどの整数を入れてもすべて素数になる(30未満で2,3,5を素因数に持たないため) 2*3*5*(7*11*13^2*17^2*(1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*(7*11*13^3*17^2*(1/2+2/3+3/5+1/7+1/11)mod1)=13 2*3*5*(7*11*13^2*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=17 2*3*5*(7*11*13^3*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=11 2*3*5*(7*11*13^3*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=7 2*3*5*(7*11*13^3*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=29 2*3*5*(7*11*13^6*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=19 2*3*5*(7*11*13^8*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=23 http://rio2016.5ch.net/test/read.cgi/math/1640355175/469
485: 132人目の素数さん [sage] 2024/02/03(土) 23:13:36.53 ID:RnpFDdRt prime[a]=a番目の素数、prime[b]=b番目の素数 a>>bのとき (prime[a]^(2^2*3)-(prime[b])^(2^2*3) ) mod (2*3*5*7)=0 (prime[a]^(2^2*5)-(peime[b])^(2^2*5) ) mod (2*3*5*7*11)=0 はすべてのa,bで満たす (prime[a]^4)^3=X* (2*3*5*7)+((prime[b])^4)^3 ←X=A^3*(2*3*5*7)^2のとき (prime[a]^4)^3=(A*(2*3*5*7))^3* (2*3*5*7)+((prime[b])^4)^3を満たすAが存在しないため a^3+b^3≠c^3 ←a,b,c=互いに素な整数 (prime[a]^2)^6=X* (2*3*5*7)+((prime[b])^2)^6 ←X=A^6*(2*3*5*7)^5のとき (prime[a]^2)^6=(A*(2*3*5*7))^6* (2*3*5*7)+((prime[b])^2)^6を満たすAが存在しないため a^6+b^6≠c^6 ←a,b,c=互いに素な整数 http://rio2016.5ch.net/test/read.cgi/math/1640355175/485
510: 132人目の素数さん [sage] 2024/08/09(金) 00:21:28.53 ID:mYslski9 いくらアンチでもさすがにブレイクした漫画はある http://rio2016.5ch.net/test/read.cgi/math/1640355175/510
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.022s