素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
67: 2022/09/26(月)14:42:59.47 ID:lfUw2+cn(1) AAS
SCALABLE MATTER?  09/26 14食42口
122: 2023/02/20(月)00:50:27.47 ID:x6Rhkjrn(1/2) AAS
((2*3*5*7)*(1+1/2+1/3+1/5+1/7)) mod (2*3*5) = 7
((2*3*5*7)*(1+1/2+1/3+1/5+1/7)) =15* (2*3*5) + 0.23*(2*3*5)

((2*3*5*7)*(1+1/2+1/3+1/5+1/7))-15* (2*3*5) = 0.23*(2*3*5)
(2*3*5*7)+(2*3*5)*(1-15)+(2*5*7)+(3*5*7)+(2*3*7) = 0.23*(2*3*5)=7
(2*3*5*7)+(2*3*5)*(-2*7)+(2*5*7)+(3*5*7)+(2*3*7)=7*1 ←7がくくりだせるため7で割れる

((2*3*5*7^d)*(1+1/2+1/3+1/5+2^a*3^b*5^c/7^d)) =A* (2*3*5) + B*(2*3*5)

((2*3*5*7^3)*(1+1/2+1/3+1/5+2^3*3^2*5^2/7^3))mod (2*3*5) =13
省4
171: 2023/09/10(日)00:00:19.47 ID:dI5uwGku(1/3) AAS
cos(2pi*(1/2+1/3+1/5+1/7+1/11+a/13+b/17))>cos(2pi*(281/510510))を満たすとき
aとbが同時に整数になることがないため
cos(2pi*(1/2+1/3+1/5+1/7+1/11+a/13+b/17)) の分子が素数にならない(19より大きい素数の積になる可能性がある
240
(1): 2023/12/22(金)09:03:25.47 ID:2klI76d6(1) AAS
隠しアイテム的な式はないのか
244: 2023/12/23(土)21:08:12.47 ID:O5dB6rNY(4/8) AAS
e^(i*2pi*(1/2^(1/2+i*14.12)+1/3^(1/2+i*14.12)+1/5^(1/2+i*14.12)+1/7^(1/2+i*14.12)+1/11^(1/2+i*14.12)+・・・))= e^(i*2pi*(X+i*Y))=e^-Y*e^(i*2pi*(X))←素数のみのゼータ関数
e^(i*2pi*(1/1^(1/2+i*14.12)+1/4^(1/2+i*14.12)+1/6^(1/2+i*14.12)+1/8^(1/2+i*14.12)+1/9^(1/2+i*14.12)+・・・))=e^(i*2pi*(-X-i*Y))=e^Y*e^(i*2pi*(-X))←非素数のみのゼータ関数
長さは反比例して角度はπずれる
259: 2023/12/24(日)19:44:48.47 ID:JbDEdDB5(11/17) AAS
e^(i*2pi*(1/2-floor((1/2)*3)/3-floor((1/2-floor((1/2)*3)/3)*5)/5-floor((1/2-floor((1/2)*3)/3-floor((1/2-floor((1/2)*3)/3)*5)/5)*7^a)/7^a))=e^((5 i π)/105) ←aによらず分子=5で一定
309: 2023/12/30(土)22:26:56.47 ID:jsoLHdB8(10/10) AAS
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)
*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)
*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2)
省4
586: 2024/09/05(木)00:23:50.47 ID:+z5eAfXC(1/3) AAS
Σn=((1+2*3*5)*(2*3*5)/2-(2*3*5)*(2-1)*(3-1)*(5-1)/2) 1<n<2*3*5
Σe^(i*2pi*n/(a*b*c))=(-1)^(素数の個数) ←n=1以上a*b*c未満のa,b,cを素因数に持たない数の集合

e^(i*2pi*1/10)+e^(i*2pi*3/10)+e^(i*2pi*7/10)+e^(i*2pi*9/10)=1   ←2,5の2個の素数の組み合わせのため-1^2=1
e^(i*2pi*1/30)+e^(i*2pi*7/30)+e^(i*2pi*11/30)+e^(i*2pi*13/30)+e^(i*2pi*17/30)+e^(i*2pi*19/30)+e^(i*2pi*23/30)+e^(i*2pi*29/30)=-1 ←2,3,5の3個の素数の組み合わせのため-1^3=1

e^(i*2pi*1/30)*e^(i*2pi*7/30)*e^(i*2pi*11/30)*e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=1

e^(i*2pi*1/30)+e^(i*2pi*7/30)*e^(i*2pi*11/30)*e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=e^(-(i π)/15) + e^((i π)/15)
e^(i*2pi*1/30)*e^(i*2pi*7/30)+e^(i*2pi*11/30)*e^(i*2pi*13/30)*e^(i*2pi*17/30)*e^(i*2pi*19/30)*e^(i*2pi*23/30)*e^(i*2pi*29/30)=e^(-(8 i π)/15) + e^((8 i π)/15)
省4
624: 2024/09/29(日)14:25:33.47 ID:zrNEkg5o(10/12) AAS
(e^(i*2pi*1/6))^n+(e^(i*2pi*5/6))^n=1 (nが素因数2,3を持たないとき)
(e^(i*2pi*1/30))^n+(e^(i*2pi*7/30))^n+(e^(i*2pi*11/30))^n+(e^(i*2pi*13/30))^n+(e^(i*2pi*17/30))^n+(e^(i*2pi*19/30))^n+(e^(i*2pi*23/30))^n+(e^(i*2pi*29/30))^n=-1(nが素因数2,3,5を持たないとき)

Nがa*b*c*d未満のa,b,c,dを素因数に持たない数の集合の時
Σ(e^(i*2pi*N/(a*b*c*d)))^n=(-1)^4=1 nがa,b,c,dを素因数に持たないとき必ず1になる

Nがa*b*c*d*e未満のa,b,c,d,eを素因数に持たない数の集合の時
Σ(e^(i*2pi*N/(a*b*c*d*e)))^n=(-1)^5=-1 nがa,b,c,d,eを素因数に持たないとき必ず-1になる
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.022s