素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 レス栞

4: 2021/12/25(土)06:49:01.44 ID:Mb+8rzb8(1/9) AAS
VIPの方から来ました
265: 2023/12/24(日)23:58:07.44 ID:JbDEdDB5(17/17) AAS
P(k)はk番目の素数
1<=k<=mの時
2*P(m+1)^2*1/Π(P(k)^n*Π(P(k)^n-P(k)^(n-1))はnの値によらず一定
404
(1): 2024/01/14(日)02:20:39.44 ID:hK2Tvkd7(4/6) AAS
sum[Product[(Prime[k]-1), {k, 1, n}],{n, 1, 40}]*prime[41]/Product[(Prime[k]), {k, 1, 39}]=3,340  173*179=30967未満の素数3337個
405: 2024/01/14(日)21:20:17.44 ID:hK2Tvkd7(5/6) AAS
半径1の円周上に(Π(k=1~n)P(k))(1番目からn番目の素数積) 個の点を均等に分布させる(f(1)=e^(i*2π*1/Π(k=1~n)P(k))からf((Π(k=1~n)P(k)))=e^(i*2π*(Π(k=1~n)P(k))/(Π(k=1~n)P(k)))まで)
この中からf(X)=e^(i*2π*X/Π(k=1~n)P(k)))のXが1番目からn番目までの素数を素因数に含まない点のみにする
f(Y)=e^(i*2π*Σa_k/P(k))) (a_kはP(k)を素因数に含まない)  ←f(Y)=f(X)からXが1番目からn番目までの素数を素因数に含む点をすべて削除したもの
1/(2πi)*ln(f(Y))<P(n+1)^2/(Π(k=1~n)P(k))となるときのa_kが求まれば素数を出せる

Y=e^(i*2π*(1/2+1/3+1/5))
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5)))=1 <7^2
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5)))=7 <7^2
省4
480: 2024/02/03(土)21:07:13.44 ID:RnpFDdRt(5/11) AAS
p[a]^m mod Π[k=1~n]p[k] =1

((p[a]-p[n+1])+p[n+1])^m mod Π[k=1~n]p[k] =1

(((p[a]-p[n+1])+p[n+1])^m-p[n+1]^m) mod Π[k=1~n]p[k] =0

((p[a]^m-p[n+1]^m) mod Π[k=1~n]p[k] =0

p[n+1]^m mod Π[k=1~n]p[k] =1を満たすmがあるとき
n+1番目以上の素数のm乗からn+1番目の素数のm乗を引いた数は1からn番目の素数積で割り切れる。
519: 2024/08/09(金)01:34:13.44 ID:9rBcbphI(1) AAS
体重も量ってないから2人と乗用車は多いよね
694: 03/30(日)15:10:35.44 ID:IMkopg+/(3/5) AAS
210未満の数のうち2,3,5,7を素因数に持たない数を並べ1から105の範囲の数を小さい数から並べてcosに入れてかけるとき1/2^((2-1)*(3-1)*(5-1)*(7-1)/2)=1/2^24
cos(2pi*1/210)*cos(2pi*11/210)*cos(2pi*13/210)*cos(2pi*17/210)*cos(2pi*19/210)*cos(2pi*23/210)
*cos(2pi*29/210)*cos(2pi*31/210)*cos(2pi*37/210)*cos(2pi*41/210)*cos(2pi*43/210)*cos(2pi*47/210)
*cos(2pi*53/210)*cos(2pi*59/210)*cos(2pi*61/210)*cos(2pi*67/210)*cos(2pi*71/210)*cos(2pi*73/210)
*cos(2pi*79/210)*cos(2pi*83/210)*cos(2pi*89/210)*cos(2pi*97/210)*cos(2pi*101/210)*cos(2pi*103/210)
=1/2^24

0.49760464907467939250145485451399008794631603313899877675706019057553062926...
省4
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.030s