素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
109: 132人目の素数さん [sage] 2022/11/26(土) 20:39:04.39 ID:pIQXpZJr 1と素数のみのゼータ関数=|ζ(x+i*y)|-1/2^s*|ζ(x+i*y)|-(1-1/2^s)*1/3^s*|ζ(x+i*y)|-(1-1/2^s)(1-1/3^s)*1/5^s*|ζ(x+i*y)|-・・・-1/ζ(x+i*y)*1/P(n)^s*|ζ(x+i*y)| http://rio2016.5ch.net/test/read.cgi/math/1640355175/109
139: 132人目の素数さん [] 2023/04/12(水) 15:16:36.39 ID:qqmT0g6P >>138 1/((1-1/2^2)*(1-1/3^2)*(1-1/5^2)*(1-1/7^2)*(1-1/11^2)*(1-1/13^2)*(1-1/17^2))*・・・=π^2/6≒1.64 1/((1-1/2^3)*(1-1/3^3)*(1-1/5^3)*(1-1/7^3)*(1-1/11^3)*(1-1/13^3)*(1-1/17^3))*・・・≒1.21(厳密には不明) Σ1/n^(x+iy)=1+2^(x+iy)+3^(x+i*y)+・・・=1/√{(1+1/2^(2x)-2*cos(yln2)/2^x)*(1+1/3^(2x)-2*cos(yln3)/3^x)*(1+1/5^(2x)-2*cos(yln5)/5^x)*(1+1/7^(2x)-2*cos(yln7)/7^x)*・・・) →0 1/√{(1-(2*cos(yln2)/2^x-1/2^2x))*(1-(2*cos(yln3)/3^x-1/3^2x))*・・・) Σ1/n^(x+i*y)=(1+(2*cos(yln2)/2^x-1/2^2x)+(2*cos(yln2)/2^x-1/2^2x)^2+(2*cos(yln2)/2^x-1/2^2x)^3+・・・)*(1+(2*cos(yln3)/3^x-1/3^2x)+(2*cos(yln3)/3^x-1/3^2x)^2+・・・)*・・・ すべての素数を p(1),p(2),…,p(K) とおきます 第3項目以降無視する Σ1/n^(x+i*y)=1+Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)+・・・≒1+Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)→0 Σ(2*cos(ylnp(k))/p(k)^x-1/p(k)^2x)→-1に収束するときx=1/2 Σ2*cos(ylnp(k))/√p(k)-Σ1/p(k)→-1 Σ2*cos(ylnp(k))/√p(k)=Σ1/p(k)-1 http://rio2016.5ch.net/test/read.cgi/math/1640355175/139
177: 132人目の素数さん [sage] 2023/09/16(土) 21:42:29.39 ID:PJtUNqdO 255255m+127447<X=((1/3+n/(5*7*11*13*17))*3*5*7*11*13*17)<255255m+127808 255255 m + 127447<3 n + 85085<255255 m + 127808 42362/3<n<14241 cos(2pi*(1/2+X/(3*5*7*11*13*17))) e^(i*2pi*(1/2+((1/3+n/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) ←nが42362/3<n<14241のとき分子は素数になる e^(i*2pi*(1/2+((1/3+14130/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(61 i π)/51051) e^(i*2pi*(1/2+((1/3+14131/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(23 i π)/19635) e^(i*2pi*(1/2+((1/3+14132/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(293 i π)/255255) e^(i*2pi*(1/2+((1/3+14133/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(41 i π)/36465) e^(i*2pi*(1/2+((1/3+14134/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(281 i π)/255255) e^(i*2pi*(1/2+((1/3+14135/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(5 i π)/4641) e^(i*2pi*(1/2+((1/3+14136/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(269 i π)/255255) e^(i*2pi*(1/2+((1/3+14137/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(263 i π)/255255) e^(i*2pi*(1/2+((1/3+14138/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(257 i π)/255255) e^(i*2pi*(1/2+((1/3+14238/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^((49 i π)/36465) 14238が7を素因数にもつため分子が素数にならない e^(i*2pi*(1/2+((1/3+14239/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^((349 i π)/255255) e^(i*2pi*(1/2+((1/3+14240/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^((71 i π)/51051) http://rio2016.5ch.net/test/read.cgi/math/1640355175/177
322: 132人目の素数さん [sage] 2024/01/01(月) 01:14:02.39 ID:7BKpZ/zg ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0 ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0 F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・) ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ] (1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため Σ1/(2n-1)^s-Σ1/(2n)^s=0 (1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0になるため Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0 (1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0 (1/1^s+1/2^s+1/3^s+・・・+1/(m-1)^s-(m-1)/(m)^s+1/(m+1)^s+・・・+1/(2m-1)^s-(m-1)/(2m)^s+・・・)=0になるため Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s-(m-1)*Σ1/(mn)^s=0 Σ1/(mn)^s=1/(m-1)*(Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s)=0 ←s=1/2+i*yのときのみ成り立つことを証明すればいいため Σ1/(mn-(m-1))^s+Σ1/(mn-(m-2))^s+Σ1/(mn-(m-3))^s+・・・+Σ1/(mn-1)^s=A*e^(i*B)としてx≠1/2のときA≠0を示せばいい http://rio2016.5ch.net/test/read.cgi/math/1640355175/322
463: 132人目の素数さん [sage] 2024/01/27(土) 21:38:29.39 ID:G74Xg1V/ 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23+24/29)mod1)=31 2*3*5*7*11*13*17*19*23*(29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23)mod1)=31 2*3*5*7*11*13*17*19*(23*29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19)mod1)=31 2*3*5*7*11*13*17*(19*23*29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17)mod1)=31 2*3*5*7*11*13*(17*19*23*29*(1/2+1/3+1/5+2/7+9/11+3/13)mod1)=31 2*3*5*7*11*(13*17*19*23*29*(1/2+1/3+1/5+2/7+9/11)mod1)=31 2*3*5*7*(11*13*17*19*23*29*(1/2+1/3+1/5+2/7)mod1)=31 2*3*5*(7*11*13*17*19*23*29*(1/2+1/3+1/5)mod1)=1≠31 ←2*3*5=30までの数字しか表現できないため http://rio2016.5ch.net/test/read.cgi/math/1640355175/463
513: 132人目の素数さん [sage] 2024/08/09(金) 01:00:58.39 ID:ne06At9i しかも五輪直後のアイスショーガラガラだったし http://rio2016.5ch.net/test/read.cgi/math/1640355175/513
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.035s