素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
371: 132人目の素数さん [sage] 2024/01/08(月) 00:16:23.34 ID:r5n8vQTC (2*(ln2/lnn))-1)*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n)) =Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))-2*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(2n)) (2π*Im(zetazero[1])*ln(n))=Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(2*(ln2/lnn))-1)) ←正規化する e^(i*Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(2*(ln2/lnn))-1))=1 http://rio2016.5ch.net/test/read.cgi/math/1640355175/371
395: 132人目の素数さん [sage] 2024/01/13(土) 17:51:24.34 ID:IOv4lBIh Π(k=1~∞)Prime[k]未満の素数Prime[k](k=1~∞)を素因数に持たない集合の和は Π(k=1~∞)Prime[k]を必ず素因数にもつ Π(k=1~∞)Prime[k]>X(∞) Π(k=1~∞)Prime[k]*A=Σ(m=1~∞)X(m) ←X(m)はprime[k]を素因数に持たない ζ(1/2+iy)=Σ1/n^(1/2+iy)=1/1+e^(i*yln2)/√2+e^(i*yln3)/√3+e^(i*yln4)/√4+・・・ ζ(1/2+iy)=0のとき Σ2π*(y*ln(n)) mod 2π=0 ←Σ(n=1~∞)(y*ln(n)) は整数になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/395
618: 132人目の素数さん [sage] 2024/09/29(日) 02:03:08.34 ID:zrNEkg5o ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^7+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^7=843=3*281 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^8+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^8=2207 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^9+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^9=5778=2*3^3*107 ((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^n+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^nは2または3または7で割り続ければ素数になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/618
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.534s*