素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
371: 2024/01/08(月)00:16:23.34 ID:r5n8vQTC(1/3) AAS
(2*(ln2/lnn))-1)*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))
=Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(n))-2*Σ(n=1〜∞)(2π*Im(zetazero[1])*ln(2n))
(2π*Im(zetazero[1])*ln(n))=Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(2*(ln2/lnn))-1)) ←正規化する

e^(i*Σ(n=1〜∞)((-1)^(n-1)*(2π*Im(zetazero[1])*ln(n))/(2*(ln2/lnn))-1))=1
395: 2024/01/13(土)17:51:24.34 ID:IOv4lBIh(5/9) AAS
Π(k=1~∞)Prime[k]未満の素数Prime[k](k=1~∞)を素因数に持たない集合の和は
Π(k=1~∞)Prime[k]を必ず素因数にもつ

Π(k=1~∞)Prime[k]>X(∞)

Π(k=1~∞)Prime[k]*A=Σ(m=1~∞)X(m) ←X(m)はprime[k]を素因数に持たない

ζ(1/2+iy)=Σ1/n^(1/2+iy)=1/1+e^(i*yln2)/√2+e^(i*yln3)/√3+e^(i*yln4)/√4+・・・
ζ(1/2+iy)=0のとき
Σ2π*(y*ln(n)) mod 2π=0 ←Σ(n=1~∞)(y*ln(n)) は整数になる
618: 2024/09/29(日)02:03:08.34 ID:zrNEkg5o(5/12) AAS
((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^7+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^7=843=3*281
((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^8+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^8=2207
((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^9+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^9=5778=2*3^3*107

((e^(i*2pi*1/10)+e^(i*2pi*7/10))*(e^(i*2pi*9/10)+e^(i*2pi*3/10)))^n+((e^(i*2pi*1/10)+e^(i*2pi*3/10))*(e^(i*2pi*9/10)+e^(i*2pi*7/10)))^nは2または3または7で割り続ければ素数になる
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.024s