素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
182: 2023/09/17(日)00:49:51.30 ID:NvL18fxN(3/3) AAS
連続する素数の差分は2^nと2^(n-1)が交互に来る
73 +2^4=89
89+2^3=97
97+2^4=113
281: 2023/12/25(月)18:23:09.30 ID:cm14oBhI(16/19) AAS
√(((1/2)*1/ln(P(n+1))*1/(Π(1-1/P(k)))/√(((1/2)*1/ln(P(n))*1/(Π(1-1/P(k)))≒1
P(n+1)≒e^(lnP(n)/(1-1/P(n))と近似できる   
P(2)=5≒5.19=e^(ln3/(1-1/3))
P(3)=7≒7.47=e^(ln5/(1-1/5))
P(4)=11≒9.68=e^(ln7/(1-1/7))
P(5)=13≒13.98=e^(ln11/(1-1/11))
490: 2024/02/06(火)22:26:41.30 ID:kLz8pBCr(2/2) AAS
(prime[5]^(2^4*7*5*13*19*22)-i) mod (2*3*5*7)=-89-i
(prime[5]^(2^4*7*5*13*23)-i) mod (2*3*5*7)=-59-i
(prime[6]^(11*7*17*23)-i) mod (2*3*5*7)=97-i
(prime[6]^(11*7*17*23*11)-i) mod (2*3*5*7)=13-i
(prime[7]^(103*7*19*23*11)-i) mod (2*3*5*7)=67-i
(prime[7]^(101*7*19*23*11)-i) mod (2*3*5*7)=47-i
(prime[7]^(29*7*19*23*11)-i) mod (2*3*5*7)=47-i
省1
498: 2024/02/14(水)17:57:21.30 ID:KR7c1JPW(1/2) AAS
◆奇数の数列
Table[2n-1,{n,90,170}]

◆素数位置特定アルゴリズム
Table[Product[C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,90,170}]

二つの数列の合成に成功

Table[Product[(2n-1)^(C(0,3-a))C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,90,170}]

☆☆☆☆☆
620: 2024/09/29(日)02:36:21.30 ID:zrNEkg5o(7/12) AAS
((e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14)))^3
+(e^(i*2pi*1/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))^3
+(e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*5/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*9/14))^3
+(e^(i*2pi*1/14)+e^(i*2pi*11/14)+e^(i*2pi*9/14))*(e^(i*2pi*13/14)+e^(i*2pi*3/14)+e^(i*2pi*5/14))^3
=666=2*3^2*37
654: 2024/10/19(土)12:52:14.30 ID:eSVNtglR(2/3) AAS
a≠2の素数の時
(a^1)!/(a^(a^(1-1))*((a^0)!)) mod a^1 = -1
(a^2)!/(a^(a^(2-1))*((a^1)!)) mod a^2 = -1
(a^k)!/(a^(a^(k-1))*((a^(k-1))!)) mod a^k = -1

a^k+b^k=c^k
(x+1)/(n+1)+(y+1)/(m+1)=(z+1)/(l+1)
x=(a^k)!/(a^(a^(k-1))*((a^(k-1))!))
省3
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.022s