素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
174: 2023/09/11(月)01:16:13.16 ID:PGAOsNVR(1) AAS
cos(2pi*(1/2+n/(3*5*7*11*13))) >cos(2pi*(17^2/(2*3*5*7*11*13)))
15015 m + 7363<n<15015 m + 7652
√(A+B)=√(3*5*7*11*13)
A-B=17^2
√(A-B)=17
A=7652 B=7363
√(A+B)*√(A^2-B^2)=3*5*7*11*13*17
省5
176: 2023/09/16(土)11:52:44.16 ID:PJtUNqdO(1/4) AAS
素数を式で出すには定義から見つけないと無理だな虚数みたいに
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31=3770006491/200560490130
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31-1/37=-61070249963/7420738134810
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31-1/37+1/41=4916857886327/304250263527210
4916857886327=1301*3779291227
4916857886327は2から41の素数で割れないものの43以上の素数の積になる可能性がある
cos(2pi*(1/2+n/(3*5*7*11*13*17))) >cos(2pi*(19^2/510510))
省9
196: 2023/10/29(日)11:38:33.16 ID:MYhVftt0(1) AAS
私からの挑戦状
君は、無事、素数の謎が解けるか
暗号
ノート
素数
0Σ
金とドイツ音楽家
省1
211: 2023/12/03(日)19:56:45.16 ID:ytu0Oj+u(9/9) AAS
cos(2pi*(1/2^4+1/(3*5*7)^4)) =cos(2pi*(c^4/(2*3*5*7)^4))
c = 1944810000 n + 5250989, n element Z
c = 1944810000 n + 11474377, n element Z
c = 1944810000 n + 19508123, n element Z
c = 1944810000 n + 36233489, n element Z
c = 1944810000 n + 90568123, n element Z
c = 1944810000 n + 104825261, n element Z
省15
338(1): 2024/01/03(水)00:33:11.16 ID:mP/SslTt(1/8) AAS
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))
=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s)))
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.47935388・・・
424: 2024/01/20(土)23:50:49.16 ID:przZ0vAJ(5/5) AAS
(Π[k=1~n)P(k))^1*((Σ(k=1~n)(X_k)/P(k))^1 mod 1)=P(n+1)を満たすとき
(Π[k=1~n)P(k))^a*((Σ(k=1~n)(X_k)/P(k))^a mod 1)=P(n+1)*X
aの値によらず出てくる値はP(n+1)(n+1番目の素数)を素因数にもつ
(2*3*5*7*11*13*17*19*23)^5*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)^5mod1)=29×128516771×24671352289638928778049497411
592: 2024/09/10(火)20:52:03.16 ID:+UCiFtmk(2/2) AAS
(x^2+y^2+z^2-2*x*y-2*x*z-2*y*z)=(√x+√y+√z)*(√x+√y-√z)*(√x-√y+√z)*(√x-√y-√z)
√((√x+√y+√z)*(√x+√y-√z)*(√x-√y+√z)*(√x-√y-√z))=i*z
√(x^2+y^2+z^2-2*x*y-2*x*z-2*y*z)=i*z
x=z/2 y=z/2 z=z
√(x^2+x^2+z^2-2*x*x-2*x*z-2*x*z)=i*z
√(y^2+y^2+z^2-2*y*y-2*y*z-2*y*z)=i*z
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s