素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
347: 132人目の素数さん [sage] 2024/01/04(木) 00:56:35.97 ID:HQkE/6B8 a^n+b^n≠c^n (a,b,c,は互いに素) n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる x1=x2=x3にならない(x1=x2=x3=0を除く) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n)) ←が成り立つとするx1≠x2≠x3 x3 = -(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n+(x1-x3)/(a*b)^n))=e^(i*2π*(x3/(a*b)^n+(x1-x3)/(a*b)^n)))=e^(i*2π*(x1/(a*b)^n)) x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nであることを示せばいい x2/(a*c)^n+(x1-(-(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π)))/(a*b)^n=x1/(a*c)^n x1 (a b)^(-n) - x1 (b c)^(-n) - c_1 = x1 (a c)^(-n) (a b)^n (a c)^n Subscript["c", 1] == (a c)^n x1 + ((a b)^n (-2 Pi x1 + 2 Pi x2 + I (a c)^n Log[E^(((2 I) Pi x1)/(b c)^n + ((2 I) Pi x2)/(a c)^n)]))/(2 Pi)←n>=3以上のときc1≠0のため x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nになるためa^n+b^n≠c^n http://rio2016.5ch.net/test/read.cgi/math/1640355175/347
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 354 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.008s