素数の規則を見つけたい。。。 (701レス)
上下前次1-新
308: 2023/12/30(土)22:03 ID:jsoLHdB8(9/10) AAS
1/2^(x+i*y+i*π/ln2)=1/2^(x+i*y)*1/e^(i*π)=-1/2^(x+i*y)
ゼータ関数をζ(x+i*y)≒1+1/2^(x+i*y)と簡略化する
ζ(x+i*y’)とζ(x+i*y)を考えて差がほぼ0になる点を探す
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x+i*y')-1/2^(x+i*y))=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2-i*π/ln2^2+i*π/ln2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3*+i*π/ln2^3+i*π/ln2^2+i*π/ln2))
lim[n→∞] (1/2^(x/2^n+i*y'/2^n)-1/2^(x/2^n+i*y/2^n+i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2))≒0
省8
上下前次1-新書関写板覧索設栞歴
あと 393 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.009s