素数の規則を見つけたい。。。 (701レス)
1-

402: 2024/01/14(日)02:01 ID:hK2Tvkd7(2/6) AAS
円を重ねて素数の個数を求める

((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1))*(11*7)/(2*3*5*7)=21.63 11*7=77未満の素数の個数=21個

((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1))*(13*11)/(2*3*5*7*11)=33.36 13*11=143未満の素数の個数=34個

((2-1)+(2-1)*(3-1)+(2-1)*(3-1)*(5-1)+(2-1)*(3-1)*(5-1)*(7-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1)+(2-1)*(3-1)*(5-1)*(7-1)*(11-1)*(13-1))*(17*13)/(2*3*5*7*11*13)=46.35 17*13=221未満の素数の個数=47個
403: 2024/01/14(日)02:16 ID:hK2Tvkd7(3/6) AAS
sum[Product[(Prime[k]-1), {k, 1, n}],{n, 1, m}]*prime[m+1]/Product[(Prime[k]), {k, 1, m-1}]=prime[m]*prime[m-1]未満の素数の個数
404
(1): 2024/01/14(日)02:20 ID:hK2Tvkd7(4/6) AAS
sum[Product[(Prime[k]-1), {k, 1, n}],{n, 1, 40}]*prime[41]/Product[(Prime[k]), {k, 1, 39}]=3,340  173*179=30967未満の素数3337個
405: 2024/01/14(日)21:20 ID:hK2Tvkd7(5/6) AAS
半径1の円周上に(Π(k=1~n)P(k))(1番目からn番目の素数積) 個の点を均等に分布させる(f(1)=e^(i*2π*1/Π(k=1~n)P(k))からf((Π(k=1~n)P(k)))=e^(i*2π*(Π(k=1~n)P(k))/(Π(k=1~n)P(k)))まで)
この中からf(X)=e^(i*2π*X/Π(k=1~n)P(k)))のXが1番目からn番目までの素数を素因数に含まない点のみにする
f(Y)=e^(i*2π*Σa_k/P(k))) (a_kはP(k)を素因数に含まない)  ←f(Y)=f(X)からXが1番目からn番目までの素数を素因数に含む点をすべて削除したもの
1/(2πi)*ln(f(Y))<P(n+1)^2/(Π(k=1~n)P(k))となるときのa_kが求まれば素数を出せる

Y=e^(i*2π*(1/2+1/3+1/5))
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5)))=1 <7^2
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5)))=7 <7^2
省4
406: 2024/01/14(日)21:39 ID:hK2Tvkd7(6/6) AAS
Π(k=1~n)(P(k)-1)の大きさでa_kの組み合わせは増えていくため
その中からP(n+1)^2より小さい数を吐き出すa_kの組み合わせを求める必要がある

(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+13/11+4/13))) =-10039
(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+3/5+1/7+13/11+4/13))) =1973

(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+10/11+12/13))) =-10331
(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+1/11+1/13))) =10331

(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+1/3+1/5+1/7+1/11))) =617
省4
407: 2024/01/15(月)00:21 ID:Z9hJzEUI(1/3) AAS
(Product[(Prime[k]), {k, 1, 17}])/(2πi)*ln(e^(i*2π*(sum[(-2)^(k-1)/prime[k],{k,1,17}]))) =326065381055471725501
408: 2024/01/15(月)01:07 ID:Z9hJzEUI(2/3) AAS
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5)))=7 ←7を式に入れる
(2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+2/3-2/5+2/7)))=11 ←11を式に入れる
(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5-8/7+2/11)))=13 ←13を式に入れる 
1からn番目の素数でn+1番目の素数を表現するとき分子は±2^kになる可能性がある
409: 2024/01/15(月)01:13 ID:Z9hJzEUI(3/3) AAS
(2^n) mod prime[k]  =X
prime[k]が何番目の素数でもnを変動させることでXは1からprime[k]-1の間のすべての整数を表現できる
410: 2024/01/16(火)18:42 ID:CGru1Z9S(1/2) AAS
(2*3*5)/(2πi)*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))=7
(2*3*5*7)/(2πi)*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))=11
(2*3*5*7*11)/(2πi)*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))=13
(2*3*5*7*11*13)/(2πi)*ln(e^(i*2π*(1/2+1/3+2/5+4/7+3/11+(12+13n)/13)))=17
411: 2024/01/16(火)20:26 ID:CGru1Z9S(2/2) AAS
(2*3*5*7*11*13*17)/(2πi)*ln(e^(i*2π*(1/2+a/3+b/5+c/7+d/11+x/13+y/17)))=19
a,b,c,d,x,yに分母の素因数を持たない数を入れて式を満たす組み合わせは一通りだけある
412: 2024/01/18(木)00:01 ID:N7iNgq1x(1/7) AAS
1/(πi)*ln(e^(i*2π*(3/2)))=3
1/(πi)^2*ln(e^(i*2π*(3/2)))*ln(e^(i*2π*(1/2+1/3)))=5
1/(πi)^4*ln(e^(i*2π*(3/2)))^2*ln(e^(i*2π*(1/2+1/3)))*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))=7
1/(πi)^8*ln(e^(i*2π*(3/2)))^4*ln(e^(i*2π*(1/2+1/3)))^2*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))=11
1/(πi)^16*ln(e^(i*2π*(3/2)))^8*ln(e^(i*2π*(1/2+1/3)))^4*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))^2*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))=13
1/(πi)^32*ln(e^(i*2π*(3/2)))^16*ln(e^(i*2π*(1/2+1/3)))^8*ln(e^(i*2π*(1/2+1/3+(2+5n)/5)))^4*ln(e^(i*2π*(1/2+2/3+3/5+(2+7n)/7)))^2*ln(e^(i*2π*(1/2+2/3+4/5+6/7+(2+11n)/11)))*ln(e^(i*2π*(1/2+1/3+2/5+4/7+3/11+(12+13n)/13)))=17

Prime(n)=1/(πi)^2^(n-1)*Πln(e^(i*2π*(ΣX/Y)))
413: 2024/01/18(木)01:08 ID:N7iNgq1x(2/7) AAS
((3/2))^8*((1/2+1/3)mod1)^4*((1/2+1/3+(2)/5)mod1)^2*((1/2+2/3+3/5+(2)/7)mod1)*((1/2+2/3+4/5+6/7+(2)/11)mod1)*2^16=13
414
(1): 2024/01/18(木)01:13 ID:N7iNgq1x(3/7) AAS
((3/2))^16*((1/2+1/3)mod1)^8*((1/2+1/3+(2)/5)mod1)^4*((1/2+2/3+3/5+(2)/7)mod1)^2*((1/2+2/3+4/5+6/7+(2)/11)mod1)*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*2^32=17
415: 2024/01/18(木)01:18 ID:N7iNgq1x(4/7) AAS
((3/2))^32*((1/2+1/3)mod1)^16*((1/2+1/3+(2)/5)mod1)^8*((1/2+2/3+3/5+(2)/7)mod1)^4*((1/2+2/3+4/5+6/7+(2)/11)mod1)^2*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*((1/2+a/3+b/5+c/7+d/11+e/13+f/17)mod1)*2^64=19
a = 3 n_1 + 1, b = 5 n_2 + 2, c = 7 n_3 + 3, d = 11 n_4 + 8, e = 13 n_5 + 11, f = 17 n_6 + 13, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z, n_5 element Z, n_6 element Z
((3/2))^32*((1/2+1/3)mod1)^16*((1/2+1/3+(2)/5)mod1)^8*((1/2+2/3+3/5+(2)/7)mod1)^4*((1/2+2/3+4/5+6/7+(2)/11)mod1)^2*((1/2+1/3+2/5+4/7+3/11+(12)/13)mod1)*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)*2^64=19
416: 2024/01/18(木)01:26 ID:N7iNgq1x(5/7) AAS
2*3*5*7*11*13*17*19*((1/2+a/3+b/5+c/7+d/11+e/13+f/17+g/19)mod1)=23
a = 3 n_1 + 2, b = 5 n_2 + 1, c = 7 n_3 + 5, d = 11 n_4 + 7, e = 13 n_5 + 11, f = 17 n_6 + 11, g = 19 n_7 + 15, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z, n_5 element Z, n_6 element Z, n_7 element Z
2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23
417: 2024/01/18(木)19:06 ID:N7iNgq1x(6/7) AAS
2*3*((1/2+1/3)mod1)=5
2*3*5*((1/2+1/3+2/5)mod1)=7
2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11
2*3*5*7*11*((1/2+2/3+4/5+6/7+2/11)mod1)=13
2*3*5*7*11*13*((1/2+1/3+2/5+4/7+3/11+12/13)mod1)=17
2*3*5*7*11*13*17*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)=19
2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23
省1
418: 2024/01/18(木)20:27 ID:N7iNgq1x(7/7) AAS
2*3*((1/2+2/3)mod1)=1
2*3*5*((1/2+1/3+1/5)mod1)=1
2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
省1
419: 2024/01/20(土)01:50 ID:przZ0vAJ(1/5) AAS
ζ(s)=1/(1-2^(s-1))*1/(1-m^(s-1))*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(x-1)*(n)^x),{n, 1, ∞}]
ζ(s)=0のとき
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/(m^(x-1)*(n)^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn/m^(1/x)))/(mn/m^(1/x))^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(n))/((n)^x),{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*ln(mn))/((mn)^x),{mn, 1, ∞}]=0 ←n=mnも0
n=mn/m^(1/x))^xとおく
省3
420: 2024/01/20(土)01:52 ID:przZ0vAJ(2/5) AAS
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x),{n, 1, ∞}]=0

ζ(s)=1/m*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn)^x,{n, 1, ∞}]=0

以下の2つの式が同時に0になるときがx=1/2のときのみ
ζ(s)=1/m*sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)])/(mn)^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn)^x,{n, 1, ∞}]=0
421: 2024/01/20(土)10:52 ID:przZ0vAJ(3/5) AAS
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(mn)-ln(m^(1/x))])/(mn/m^(1/x))^x,{n, 1, ∞}]=0

ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)-ln(m^(1/x))])/(mn/m^(1/x))^x,{n, 1, ∞}]=0
x=1/2のとき
nを定数、mを変数としてみたとき符号が反転するのみ
ζ(s)=sum[(-1)^(n-1)*e^(i*Im[zetazero[1]]*[ln(m)+ln(n)])/(n/m)^1/2,{n, 1, ∞}]=0
省1
422: 2024/01/20(土)12:15 ID:rwBYdej7(1) AAS
素数(prime number)なので、

p=2(m+3n)-3 ,[m,nは自然数] とおく

m=1,n=1 のとき、p=5
m=2,n=1 のとき、p=7
m=1,n=2 のとき、p=11
m=2,n=2 のとき、p=13
m=1,n=3 のとき、p=17
省14
423: 2024/01/20(土)23:45 ID:przZ0vAJ(4/5) AAS
2*3*((1/2+1/3)mod1)=5
2*3*5*((1/2+1/3+2/5)mod1)=7
2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11
2*3*5*7*11*((1/2+2/3+4/5+6/7+2/11)mod1)=13
2*3*5*7*11*13*((1/2+1/3+2/5+4/7+3/11+12/13)mod1)=17
2*3*5*7*11*13*17*((1/2+1/3+2/5+3/7+8/11+11/13+13/17)mod1)=19
2*3*5*7*11*13*17*19*((1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)mod1)=23
省9
424: 2024/01/20(土)23:50 ID:przZ0vAJ(5/5) AAS
(Π[k=1~n)P(k))^1*((Σ(k=1~n)(X_k)/P(k))^1 mod 1)=P(n+1)を満たすとき
(Π[k=1~n)P(k))^a*((Σ(k=1~n)(X_k)/P(k))^a mod 1)=P(n+1)*X
aの値によらず出てくる値はP(n+1)(n+1番目の素数)を素因数にもつ

(2*3*5*7*11*13*17*19*23)^5*((1/2+1/3+1/5+3/7+5/11+8/13+15/17+7/19+5/23)^5mod1)=29×128516771×24671352289638928778049497411
425: 2024/01/21(日)01:27 ID:h+lG8rsE(1/12) AAS
2*3*((1/2+2/3)mod1)=1
2*3*5*((1/2+1/3+1/5)mod1)=1
2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
省11
426: 2024/01/21(日)01:38 ID:h+lG8rsE(2/12) AAS
((2*3)*((1/2+1/3))-5)/(2*3)=0
((2*3*5)*(1/2+1/3+2/5)-7)/(2*3*5)=1
((2*3*5*7)*(1/2+2/3+3/5+2/7)-11)/(2*3*5*7)=2
((2*3*5*7*11)*(1/2+2/3+4/5+6/7+2/11)-13)/(2*3*5*7*11)=3
((2*3*5*7*11*13)*(1/2+1/3+2/5+4/7+3/11+12/13)-17)/(2*3*5*7*11*13)=3
((2*3*5*7*11*13*17)*(1/2+1/3+2/5+3/7+8/11+11/13+13/17)-19)/(2*3*5*7*11*13*17)=4
((2*3*5*7*11*13*17*19)*(1/2+2/3+1/5+5/7+7/11+11/13+11/17+15/19)-1)/(2*3*5*7*11*13*17*19)=5
省1
427: 2024/01/21(日)16:00 ID:h+lG8rsE(3/12) AAS
(2*3*5*7*11)*((1/2+2/3+3/5+1/7+1/11)mod1)=1
(2*3*5*7*11)*((m/2+2m/3+3m/5+m/7+m/11)mod1)=1*m
(2*3*5*7*11)*((13/2+2*13/3+3*13/5+13/7+13/11)mod1)=1*13

(2*3*5*7*11)*((2311/2+2*2311/3+3*2311/5+2311/7+2311/11)mod1)=2311=1=(2*3*5*7*11)*((1/2+2/3+3/5+1/7+1/11)mod1)

(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13
(2*3*5*7*11)*((m/2+2m/3+4m/5+6m/7+2m/11)mod1)=13*m
(2*3*5*7*11)*((1/2+2/3+2/5+1/7+4/11)mod1)=13*13
428: 2024/01/21(日)16:11 ID:h+lG8rsE(4/12) AAS
(2*3)*((2*3+1)*(a/2+b/3)mod1)=(2*3)*((a/2+b/3)mod1)=1
(2*3*5)*((2*3*5+1)*(a/2+b/3+c/5)mod1)=(2*3*5)*((a/2+b/3+c/5)mod1)=1
(2*3*5*7)*((2*3*5*7+1)*(a/2+b/3+c/5+d/7)mod1)=(2*3*5*7)*((a/2+b/3+c/5+d/7)mod1)=1
(2*3*5*7*11)*((2*3*5*7*11+1)*(a/2+b/3+c/5+d/7+e/11)mod1)=(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=1
(2*3*5*7*11*13)*((2*3*5*7*11*13+1)*(a/2+b/3+c/5+d/7+e/11+f/13)mod1)=(2*3*5*7*11*13)*((a/2+b/3+c/5+d/7+e/11+f/13)mod1)=1
429: 2024/01/21(日)16:14 ID:h+lG8rsE(5/12) AAS
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+m)*(a/2+b/3+c/5+d/7+e/11)mod1)=(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=m
N1からN5,mに何を入れても満たす
430: 2024/01/21(日)16:21 ID:h+lG8rsE(6/12) AAS
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+13)*(1/2+2/3+4/5+6/7+2/11)mod1)=(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17)*(1/2+1/3+1/5+3/7+6/11)mod1)=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1)=17

(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17*13)*(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=13*17
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17)*(1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=17*13
431: 2024/01/21(日)16:29 ID:h+lG8rsE(7/12) AAS
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17*13)*(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=13*17
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+13*17)*(1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=17*13
(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17

(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)は(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)でもあり、(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)でもある
432: 2024/01/21(日)16:54 ID:h+lG8rsE(8/12) AAS
(2^2*3*5*7*11+1)=4621は素数
(2*3*5*7*11)*((2^2*3*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1

(2^2*3^2*5*7*11+1)=13861=83*167は非素数

(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1*83/2+2*83/3+3*83/5+1*83/7+1*83/11)mod1)=83=(2*3*5*7*11)*((1/2+1/3+4/5+6/7+6/11)mod1)
(2*3*5*7*11)*((2^2*3^2*5*7*11+1)*(1*167/2+2*167/3+3*167/5+1*167/7+1*167/11)mod1)=167=(2*3*5*7*11)*((1/2+1/3+1/5+6/7+2/11)mod1)

(2*3*5*7*11)*((1*167/2+1*167/3+4*167/5+6*167/7+6*167/11)mod1)=1=(2*3*5*7*11)*((1*83/2+1*83/3+1*83/5+6*83/7+2*83/11)mod1)
433: 2024/01/21(日)17:44 ID:h+lG8rsE(9/12) AAS
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+ab)*(1/2+2/3+3/5+1/7+1/11)mod1)=ab
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+a)*(1/2+2/3+3/5+1/7+1/11)mod1)=a
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+b)*(1/2+2/3+3/5+1/7+1/11)mod1)=b

2*3*5*7*11+13*17=2531は素数

(2*3*5*7*11)*((1*13/2+2*13/3+3*13/5+1*13/7+1*13/11)mod1)=(2*3*5*7*11)*((1/2+2/3+4/5+6/7+2/11)mod1)=13
(2*3*5*7*11)*((1*17/2+2*17/3+3*17/5+1*17/7+1*17/11)mod1)=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1)=17
(2*3*5*7*11)*((1*13*17/2+2*13*17/3+3*13*17/5+1*13*17/7+1*13*17/11)mod1)=(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17
省10
434: 2024/01/21(日)17:49 ID:h+lG8rsE(10/12) AAS
2*3*5*7*11-13*17=2089は素数
(2*3*5*7*11)*((2*3*5*7*11*1-13)(1/2+2/3+3/5+1/7+1/11)mod1)=2297=(2*3*5*7*11)*((1/2+1/3+1/5+1/7+9/11)mod1)
(2*3*5*7*11)*((2*3*5*7*11*1+17)(1/2+2/3+3/5+1/7+1/11)mod1)=17=(2*3*5*7*11)*((1/2+1/3+1/5+3/7+6/11)mod1)
(2*3*5*7*11)*((2*3*5*7*11*1-13*17)(1/2+2/3+3/5+1/7+1/11)mod1)=2089

(2*3*5*7*11)*((2*3*5*7*11*1)(1*17/2+1*17/3+1*17/5+1*17/7+9*17/11)mod1)=(2*3*5*7*11)*((2*3*5*7*11*1)(1*-13/2+1*-13/3+1*-13/5+3*-13/7+6*-13/11)mod1)
となるが2297*17=2089となり矛盾するため
435: 2024/01/21(日)19:42 ID:Vwy0a1ep(1) AAS
1
21
212
1122
12111
221221
1212121… ?
436: 2024/01/21(日)21:11 ID:h+lG8rsE(11/12) AAS
(2*3*5*7*11*13)*(((2*3*5*7*11*13)-17)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+3/5+3/7+8/11+1/13)mod1)=30013
(2*3*5*7*11*13)*(((2*3*5*7*11*13)+19)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+4/5+2/7+4/11+5/13)mod1)=19

(2*3*5*7*11*13)*(((2*3*5*7*11*13)-17)*(1/2+2/3+4/5+2/7+4/11+5/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+1/7+9/11+6/13)mod1)=29707
(2*3*5*7*11*13)*(((2*3*5*7*11*13)+19)*(1/2+2/3+3/5+3/7+8/11+1/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+1/7+9/11+6/13)mod1)=29707
(2*3*5*7*11*13)*(((2*3*5*7*11*13)-17*19)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+4/5+2/7+4/11+5/13)mod1)=29707

(2*3*5*7*11*13)*(((2*3*5*7*11*13)-17)*((2*3*5*7*11*13)+19)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=29707

(2*3*5*7*11*13)*(61*487*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=(2*3*5*7*11*13)*((1/2+2/3+2/5+1/7+9/11+6/13)mod1)=29707
省9
437: 2024/01/21(日)21:23 ID:h+lG8rsE(12/12) AAS
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+m)*(a/2+b/3+c/5+d/7+e/11)mod1)=(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=m
を満たす整数a,b,c,d,eがあるとき
(2*3*5*7*11)*((a/2+b/3+c/5+d/7+e/11)mod1)=1

(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+m)*(f/2+g/3+h/5+i/7+j/11)mod1)=(2*3*5*7*11)*((f/2+g/3+h/5+i/7+j/11)mod1)=X*m
を満たす整数f,g,h,j,i,jがあるとき
(2*3*5*7*11)*((f/2+g/3+h/5+i/7+j/11)mod1)=X
f=X*a mod 2
省4
438: 2024/01/22(月)01:30 ID:bZ4XMmSY(1) AAS
(2*3*5*7*11)*((2*3*5*7*11+1)*(2/2+1/3+1/5+2/7+2/11)mod1)=2のとき
a,b,c,d,eには2で割り切れるように値を入れるとき
(2a+2)/2 mod 2=1
(3b+1)/2 mod 3=2
(5c+1)/2 mod 5=3
(7d+2)/2 mod 7=1
(11e+2)/2 mod 11=1
省15
439: 2024/01/23(火)01:17 ID:Tn7R0RHf(1/9) AAS
(2*3*5*7*11)*((2*3*5*7*11+a)*(1/2+2/3+3/5+1/7+1/11)mod1)=a
(2*3*5*7*11)*((2*3*5*7*11+b)*(1/2+2/3+3/5+1/7+1/11)mod1)=b
(2*3*5*7*11)*((2*3*5*7*11+ab)*(1/2+2/3+3/5+1/7+1/11)mod1)=ab

(2*3*5*7*11)*((2*3*5*7*11+a+b)*(1/2+2/3+3/5+1/7+1/11)mod1)=a+b

c^n=a^n+b^n < 2*3*5*7*11=2310を満たす 整数a,b,c,nがあるとき

(2*3*5*7*11)*((2*3*5*7*11+a^n+b^n)*(1/2+2/3+3/5+1/7+1/11)mod1)=a^n+b^n
(2*3*5*7*11)*((2*3*5*7*11+c^n)*(1/2+2/3+3/5+1/7+1/11)mod1)=c^n
省21
440: 2024/01/23(火)01:25 ID:Tn7R0RHf(2/9) AAS
((a+b)^n-n*((a^n-1*b^1)+(a^1-1*b^n-1))-・・・)=a^n+b^n=c^n
((a+b)^n-n*((a^n-1*b^1)+(a^1-1*b^n-1))-・・・) mod n=a^n+b^n mod n=c^n mod n ← n*((a^n-1*b^1)+(a^1-1*b^n-1))の項目が削除できてしまう

2式を同時に満たすことになるため矛盾する
((a+b)^n-n*((a^n-1*b^1)+(a^1-1*b^n-1))-・・・) mod n=a^n+b^n mod n=c^n mod n
((a+b)^n-・・・) mod n=a^n+b^n mod n=c^n mod n
441: 2024/01/23(火)01:57 ID:Tn7R0RHf(3/9) AAS
1*[(a+b)^3-3ab(a+b)] mod 2 =1*c^3 mod 2
2*[(a+b)^3-3ab(a+b)] mod 3 =2*c^3 mod 3 ← 2*[(a+b)^3] mod 3= 2*c^3 mod 3 になるものの 

2*[(a+b)^3] mod 3= 2*c^3 mod 3 2*[a^3+b^3] mod 3= 2*c^3 mod 3
この2式を同時に満たすパターンが
a=3x+1,3x+2,3x
b=3y+1,3y+2,3y     2*[(3x+1+3y+1)^3] mod 3 =2*(3z+2)^3 mod 3 2*[(3x+1)^3+(3y+1)^3] mod 3 =2*(3z+2)^3 mod 3
c=3z+1,3z+2,3z  で存在するものの
省3
442: 2024/01/23(火)14:15 ID:Mcun6w+O(1/3) AAS
素数(prime number)なので、

p=2(m+3n)-3 ,
[m,nは自然数,m≦2] とおく

m=1,n=1 のとき、p=5
m=2,n=1 のとき、p=7
m=1,n=2 のとき、p=11
m=2,n=2 のとき、p=13
省19
443: 2024/01/23(火)14:16 ID:Tn7R0RHf(4/9) AAS
(2*3*5*7*11)*((2*3*5*7*11+13^2)*(1/2+2/3+3/5+1/7+1/11)mod1)=169
(2*3*5*7*11)*((2*3*5*7*11+13^4)*(1/2+2/3+3/5+1/7+1/11)mod1)=841
(2*3*5*7*11)*((2*3*5*7*11+13^8)*(1/2+2/3+3/5+1/7+1/11)mod1)=421
(2*3*5*7*11)*((2*3*5*7*11+13^16)*(1/2+2/3+3/5+1/7+1/11)mod1)=41^2
(2*3*5*7*11)*((2*3*5*7*11+13^32)*(1/2+2/3+3/5+1/7+1/11)mod1)=631
(2*3*5*7*11)*((2*3*5*7*11+13^64)*(1/2+2/3+3/5+1/7+1/11)mod1)=841

(2*3*5*7*11)*((2*3*5*7*11+13^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=13^3
省6
444: 2024/01/23(火)14:16 ID:Mcun6w+O(2/3) AAS
m=1,n=17 のとき、p=101
m=2,n=17 のとき、p=103
m=1,n=18 のとき、p=107
m=2,n=18 のとき、p=109
m=1,n=19 のとき、p=113
m=2,n=21 のとき、p=127
m=1,n=22 のとき、p=131
省18
445: 2024/01/23(火)14:18 ID:Mcun6w+O(3/3) AAS
mの数列

121212112212111221221
121212112122211121212221

010101001101000110110
010101001011100010101110

サンプリングデータ抽出
446: 2024/01/23(火)14:19 ID:Tn7R0RHf(5/9) AAS
(2*3*5*7*11)*((2*3*5*7*11+13^7)*(1/2+2/3+3/5+1/7+1/11)mod1)=1987
(2*3*5*7*11)*((2*3*5*7*11+13^49)*(1/2+2/3+3/5+1/7+1/11)mod1)=853
(2*3*5*7*11)*((2*3*5*7*11+13^7^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=13^3
(2*3*5*7*11)*((2*3*5*7*11+13^7^4)*(1/2+2/3+3/5+1/7+1/11)mod1)=13

(2*3*5*7*11)*((2*3*5*7*11+13^11)*(1/2+2/3+3/5+1/7+1/11)mod1)=937
(2*3*5*7*11)*((2*3*5*7*11+13^11^2)*(1/2+2/3+3/5+1/7+1/11)mod1)=13
(2*3*5*7*11)*((2*3*5*7*11+13^11^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=937
447
(1): 2024/01/23(火)14:26 ID:Tn7R0RHf(6/9) AAS
(2*3*5*7*11)*((2*3*5*7*11+17^4)*(1/2+2/3+3/5+1/7+1/11)mod1)=19^2
(2*3*5*7*11)*((2*3*5*7*11+17^8)*(1/2+2/3+3/5+1/7+1/11)mod1)=961
(2*3*5*7*11)*((2*3*5*7*11+17^16)*(1/2+2/3+3/5+1/7+1/11)mod1)=1831
(2*3*5*7*11)*((2*3*5*7*11+17^32)*(1/2+2/3+3/5+1/7+1/11)mod1)=751
(2*3*5*7*11)*((2*3*5*7*11+17^64)*(1/2+2/3+3/5+1/7+1/11)mod1)=19^2

(2*3*5*7*11)*((2*3*5*7*11+17^3)*(1/2+2/3+3/5+1/7+1/11)mod1)=293
(2*3*5*7*11)*((2*3*5*7*11+17^9)*(1/2+2/3+3/5+1/7+1/11)mod1)=167
省4
448: 2024/01/23(火)19:54 ID:Tn7R0RHf(7/9) AAS
2*3*5*7*11*13*((17^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=5477
2*3*5*7*11*13*((19^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=2749
2*3*5*7*11*13*((23^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=23
2*3*5*7*11*13*((29^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=19139
2*3*5*7*11*13*((31^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=19141
2*3*5*7*11*13*((37^25*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=10957
2*3*5*7*11*13*((41^125*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=461
省4
449: 2024/01/23(火)20:18 ID:Tn7R0RHf(8/9) AAS
2*3*5*7*11*13-17^5=-1389827=-719*1933≠113*191=21583

2*3*5*7*11*13*(((2*3*5*7*11*13-17^5)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191

2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191

2*3*5*7*11*13*(((-719*1933)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191
2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191

(-719*1933) mod (2*3*5*7*11*13) =(113*191)
省16
450: 2024/01/23(火)20:34 ID:Tn7R0RHf(9/9) AAS
2*3*5*7*11*13-17^5=-1389827=-719*1933≠113*191=21583

2*3*5*7*11*13*(((2*3*5*7*11*13-17^5)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191

2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191

2*3*5*7*11*13*(((-719*1933)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191
2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191
2*3*5*7*11*13*(((-17^5)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191

(-17^5) mod (2*3*5*7*11*13) =(-719*1933) mod (2*3*5*7*11*13) =(113*191)
省6
451: 2024/01/24(水)23:28 ID:eNK6ElFR(1/3) AAS
e^(i*2pi*(((2*3*5*7*11*13+X)*(1/2+2/3+1/5+6/7+6/11+3/13))))=e^(i*2pi*X/(2*3*5*7*11*13))

e^(i*2pi*X/2)*e^(i*2pi*2X/3)*e^(i*2pi*X/5)*e^(i*2pi*6X/7)*e^(i*2pi*6X/11)*e^(i*2pi*3*X/13)=e^(i*2pi*X/(2*3*5*7*11*13))

e^(i*2pi*33/2)*e^(i*2pi*2*28/3)*e^(i*2pi*29/5)*e^(i*2pi*6*33/7)*e^(i*2pi*6*30/11)*e^(i*2pi*3*32/13)=e^(i*2pi*19/(2*3*5*7*11*13))
452: 2024/01/24(水)23:37 ID:eNK6ElFR(2/3) AAS
e^(i*2pi*31/2)*e^(i*2pi*2*28/3)*e^(i*2pi*29/5)*e^(i*2pi*6*33/7)*e^(i*2pi*6*30/11)*e^(i*2pi*3*32/13)=e^(i*2pi*19/(2*3*5*7*11*13))
e^(i*2pi*7/2)*e^(i*2pi*2*11/3)*e^(i*2pi*8/5)*e^(i*2pi*6*9/7)*e^(i*2pi*6*12/11)*e^(i*2pi*3*10/13)=e^(i*2pi*23/(2*3*5*7*11*13))
453: 2024/01/24(水)23:39 ID:eNK6ElFR(3/3) AAS
e^(i*2pi*9/2)*e^(i*2pi*2*5/3)*e^(i*2pi*4/5)*e^(i*2pi*6*8/7)*e^(i*2pi*6*7/11)*e^(i*2pi*3*3/13)=e^(i*2pi*29/(2*3*5*7*11*13))
454: 2024/01/25(木)00:05 ID:A9cOXR3Y(1) AAS
e^(i*2pi*(((2*3*5*7*11*13+19)*(1/2+2^3/3+1/5+6^7/7+6^11/11+3^13/13))))=e^(i*2pi*19/(2*3*5*7*11*13))
455: 2024/01/26(金)22:04 ID:Dz6ppHM6(1/4) AAS
> 2*3*((1/2+2/3)mod1)=1
> 2*3*5*((1/2+1/3+1/5)mod1)=1
> 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1
> 2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1
> 2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
> 2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
> 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
省22
456: 2024/01/26(金)22:18 ID:Dz6ppHM6(2/4) AAS
P(k)=k番目の素数
1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけて1になるとき
2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=1のとき
a2*Π(k=3~n)P(k) mod 3=2になる ←3の分子に3からn番目の素数をかけて3で割ると2になる
457: 2024/01/26(金)22:31 ID:Dz6ppHM6(3/4) AAS
P(k)=k番目の素数
1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけて1になるとき
2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=1のとき
ak*Π(m=1~n(kを除く))P(m) mod P(k)=1になる ←k番目の素数の分子にk番目を除く1からn番目の素数をかけてk番目の素数で割るとすべて1になる

> 2*3*5*7*11*13*17*19*23*31*((1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=1

23に関して試すと14/23のため 分子ak=14
14*2*3*5*7*11*13*17*19*31 mod 23 =1
省2
458: 2024/01/26(金)22:48 ID:Dz6ppHM6(4/4) AAS
2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=1

(12)*2*3*5*7*11*13*17*19*23 mod 29 =1

(11)*2*3*5*7*11*13*17*19*29 mod 23 =1

(4)*2*3*5*7*11*13*19*23*29 mod 17 =1
459: 2024/01/26(金)23:03 ID:6pWfMnml(1) AAS
2
3
2+3=5
2^2+3=7
2+3^2=11
2^2+3^2=13
2^3+3^2=17
省1
460: 2024/01/27(土)16:07 ID:G74Xg1V/(1/4) AAS
(29-1)! mod 29 =-1
(12)*2*3*5*7*11*13*17*19*23 mod 29 =1
((12)*2*3*5*7*11*13*17*19*23+(29-1)!)mod 29 =0

((12)+4*6*8*9*10*12*14*15*16*18*20*21*22*24*25*26*27*28)*(2*3*5*7*11*13*17*19*23) mod 29 =0
((12)+4*6*8*9*10*12*14*15*16*18*20*21*22*24*25*26*27*28) mod 29 =0
29-(4*6*8*9*10*12*14*15*16*18*20*21*22*24*25*26*27*28) mod 29) =12

(4*6*8*9*10*12*14*15*16*18*20*21*22*24*25*26*27*28)=1366643159020339200000
省5
461: 2024/01/27(土)16:54 ID:G74Xg1V/(2/4) AAS
2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=1
2*3*5*7*11*13*17*19*23*29*(19*(1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=19
2*3*5*7*11*13*17*23*29*((19/2+19/3+19/5+3*19/7+19/11+11*19/13+4*19/17+9*19/19+11*19/23+12*19/29)mod1)=1
2
*3*5*7*11*13*17*23*29*((1/2+1/3+4/5+1/7+8/11+1/13+8/17+2/23+25/29)mod1)=1

2*3*5*7*11*13*17*19*23*29*((1/2+1/3+4/5+1/7+8/11+1/13+8/17+2/23+25/29)mod1)=19

2*3*5*7*11*13*17*23*29*((1/2+19/3+4*19/5+19/7+8*19/11+19/13+8*19/17+2*19/23+25*19/29)mod1)=19
省3
462: 2024/01/27(土)21:34 ID:G74Xg1V/(3/4) AAS
P(k)=k番目の素数
1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけてP(n+1)になるとき
2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=P(n+1)のとき
ak*Π(m=1~n(kを除く))P(m) mod P(k)=P(n+1)-P(k)*Aになる ←k番目の素数の分子にk番目を除く1からn番目の素数をかけてk番目の素数で割るとすべてP(n+1)-P(k)*Aになる

2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23+24/29)mod1)=31

2*3*5*7*11*13*17*19*23*29*24/29 mod 29=2=31-29
2*3*5*7*11*13*17*19*23*29*19/23 mod 23=8=31-23
省3
463: 2024/01/27(土)21:38 ID:G74Xg1V/(4/4) AAS
2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23+24/29)mod1)=31
2*3*5*7*11*13*17*19*23*(29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23)mod1)=31
2*3*5*7*11*13*17*19*(23*29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19)mod1)=31
2*3*5*7*11*13*17*(19*23*29*(1/2+1/3+1/5+2/7+9/11+3/13+5/17)mod1)=31
2*3*5*7*11*13*(17*19*23*29*(1/2+1/3+1/5+2/7+9/11+3/13)mod1)=31
2*3*5*7*11*(13*17*19*23*29*(1/2+1/3+1/5+2/7+9/11)mod1)=31
2*3*5*7*(11*13*17*19*23*29*(1/2+1/3+1/5+2/7)mod1)=31
省1
464: 2024/01/28(日)00:30 ID:po+iLZw6(1/7) AAS
2*3*5*7*(11*13*17*19*23*29*(1/2+1/3+1/5+2/7)mod1)=31
3*5*7*(2*11*13*17*19*23*29*(1/3+1/5+2/7)mod1)=31 ←3*5*7=105まで表現できるため

2*3*5*7*11*13*17*19*23*29*(1*(1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=1
2*3*2*3*5*7*11*13*17*19*23*29*(1/2*1/3*(1/2+1/3+1/5+3/7+1/11+11/13+4/17+9/19+11/23+12/29)mod1)=25878772921=2*3*5*7*11*13*17*19*23*29+1≠1
2^2*3^2*5*7*11*13*17*19*23*29*(1*(1/2^2+2/3^2+1/5+4/7+2/11+4/13+12/17+11/19+21/23+2/29)mod1)=1
465: 2024/01/28(日)02:43 ID:po+iLZw6(2/7) AAS
A,B,Cが互いに素な時
(2*3*5*7*11)^3*(1*(3/2^3+8/3^3+42/5^3+190/7^3+584/11^3)mod1)=1
(2*3*5*7*11)^3*(C^3*(3/2^3+8/3^3+42/5^3+190/7^3+584/11^3)mod1)=A^3+B^3
C=11*X
(2*3*5*7*11)^3*(11^3*X^3*(3/2^3+8/3^3+42/5^3+190/7^3)mod1)=A^3+B^3
11^3*C^3*(2*3*5*7)^3*((3/2^3+8/3^3+42/5^3+190/7^3)mod1)=A^3+B^3 ←AとBが互いに素なことに反する
466: 2024/01/28(日)23:01 ID:po+iLZw6(3/7) AAS
2*3*5*7*11*(13*17(1/2+2/3+3/5+1/7+1/11)mod1)=13*17

2*3*5*7*(13*17(1/2+1/3+3/5+4/7+11/11)mod1)=11≠13*17

2*3*5*7*11*(13*17(1/2+2/3+3/5+1/7+11/11)mod1)=11

2*3*5*7*11*(13^3*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=1541=23*67

2*3*5*7*(13^3*17^3(1/2+1/3+3/5+4/7+11/11)mod1)=71≠23*67 ←2,3,5,7で割り切れなくて11^2未満の数になるため素数になる
省1
467: 2024/01/28(日)23:04 ID:po+iLZw6(4/7) AAS
P(k)=k番目の素数
1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)
2*3*5*7*11*・・・*P(n)*(P(x)*P(y)*(a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=[P(x)*P(y) mod 2*3*5*7*11*・・・*P(n)]として
2*3*5*7*11*・・・*P(n)→2*3*5*7*11*・・・*P(n-1)と最大素数から順に右辺にずらしていき生成される数の上限値を下げて、無理やり素数にする
468: 2024/01/28(日)23:10 ID:po+iLZw6(5/7) AAS
2*3*5*7*(11*13^a*17^b*(1/2+2/3+3/5+1/7+1/11)mod1)=151

2*3*5*7*(11*13^4*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=151
2*3*5*7*(11*13^5*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=73
2*3*5*7*(11*13^4*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=47
2*3*5*7*(11*13^5*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=191
2*3*5*7*(11*13^6*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=173
2*3*5*7*(11*13^5*17^6*(1/2+2/3+3/5+1/7+1/11)mod1)=97
省6
469: 2024/01/28(日)23:19 ID:po+iLZw6(6/7) AAS
2*3*5*(7*11*13^a*17^b*(1/2+2/3+3/5+1/7+1/11)mod1) ←a,bにどの整数を入れてもすべて素数になる(30未満で2,3,5を素因数に持たないため)
2*3*5*(7*11*13^2*17^2*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*(7*11*13^3*17^2*(1/2+2/3+3/5+1/7+1/11)mod1)=13
2*3*5*(7*11*13^2*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=17
2*3*5*(7*11*13^3*17^3*(1/2+2/3+3/5+1/7+1/11)mod1)=11
2*3*5*(7*11*13^3*17^4*(1/2+2/3+3/5+1/7+1/11)mod1)=7
2*3*5*(7*11*13^3*17^5*(1/2+2/3+3/5+1/7+1/11)mod1)=29
省2
470: 2024/01/28(日)23:53 ID:po+iLZw6(7/7) AAS
2*3*5*7*11*(13*17*(13*17*19*23*29*31*37*41*43*47)^5*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1871
2*3*5*7*11*(13*17*(13*17*19*23*29*31*37*41*43*47)^7*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=641
2*3*5*7*11*(13*17*(13*17*19*23*29*31*37*41*43*47)^9*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=911
2*3*5*7*11*(13*17*(13*17*19^3*23*29*31^2*37*41*43*47)^11*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=401
2*3*5*7*11*(13*17*(13*17*19^2*23^2*29*31^3*37*41*43*47)^13*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=997
2*3*5*7*11*(13*17*(13^2*17^2*19^2*23^2*29*31^3*37*41*43*47)^13*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=887
2*3*5*7*11*(13*17*(13^2*17*19^2*23^2*29*31^3*37*41*43*47)^13*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=991
省2
471: 2024/01/30(火)23:08 ID:dPQs+Sll(1) AAS
a×b(c×d(1/a+1/b) mod 1)=c×n <a×b
と非素数になってしまった場合
cの指数部を増やすことでcの素因数を消せる

cn mod ab =cn <ab
c^2×n mod ab = c^2n-abとなるため(ただし√ab未満の他の素因数を新たに持つ可能性がある)
その場合c×dのあとにその素因数を掛けて素因数を消す
472: 2024/01/31(水)13:39 ID:qNFnHH4o(1/2) AAS
2*3*5*7*11*(product[prime[k],{k,6,40}]^n(1/2+2/3+3/5+1/7+1/11)mod1)
2310未満の合成数の最大素因数では40番目の素数までしか存在しないため
6番目から40番目の素数をかければ高い確率で素数になる
473: 2024/01/31(水)13:41 ID:qNFnHH4o(2/2) AAS
2*3*5*7*11*(product[prime[k],{k,6,40}]^13(1/2+2/3+3/5+1/7+1/11)mod1)=31
nを大きくして11^二未満にする
474: 2024/02/02(金)22:04 ID:fHMdAo0V(1/2) AAS
2*3*5*7*11*(product[prime[k],{k,6,100}]^n(1/2+2/3+3/5+1/7+1/11)mod1)
n=1 989
n=2 991
n=3 659
n=4 331
n=5 1649
n=6 1
省9
475: 2024/02/02(金)22:08 ID:fHMdAo0V(2/2) AAS
P(k)=k番目の素数
1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)
2*3*5*7*11*・・・*P(n)*(X*(a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=X mod 2*3*5*7*11*・・・*P(n)]
Xに2*3*5*7*11*・・・*P(n)未満の数が含む最大の素因数よりも大きな素因数が混じると
吐き出されるX mod 2*3*5*7*11*・・・*P(n)] が循環しなくなる(n=0のときの1に戻ってくることがなくなる)
2*3*5*7*11*(product[prime[k],{k,6,m}]^n(1/2+2/3+3/5+1/7+1/11)mod1)

2*3*5*7*11*(product[prime[k],{k,6,39}]^n(1/2+2/3+3/5+1/7+1/11)mod1)=X
省3
476: 2024/02/03(土)13:28 ID:RnpFDdRt(1/11) AAS
2*3*5*7*(11^60*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(13^60*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(17^60*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(19^120*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(23^720*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
477: 2024/02/03(土)20:39 ID:RnpFDdRt(2/11) AAS
2*3*5*7*(11^(2^2*3*5)*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(13^(2^2*3*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(17^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(19^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(23^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*(29^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
478: 2024/02/03(土)20:47 ID:RnpFDdRt(3/11) AAS
2*3*5*7*(11^(2*3)*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(13^(2^2*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(17^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(19^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(23^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*(29^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1
479: 2024/02/03(土)20:57 ID:RnpFDdRt(4/11) AAS
2*3*5*7*(13^(2*3)*(1/2+1/3+3/5+4/7)mod1)=1
2*3*5*7*11*(19^(2^2*5)*(1/2+2/3+3/5+1/7+1/11)mod1)=1
2*3*5*7*11*13*(101^(2^2*3*5)*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1
2*3*5*7*11*13*17*(997^(2^3*3*5)*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1
2*3*5*7*11*13*17*19*(2011^(2^4*3^2*5)*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1
2*3*5*7*11*13*17*19*23*(13099^(2^4×3^2×5×11)*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1

Π[k=1~n]p[k]=1からn番目の素数積
省4
480: 2024/02/03(土)21:07 ID:RnpFDdRt(5/11) AAS
p[a]^m mod Π[k=1~n]p[k] =1

((p[a]-p[n+1])+p[n+1])^m mod Π[k=1~n]p[k] =1

(((p[a]-p[n+1])+p[n+1])^m-p[n+1]^m) mod Π[k=1~n]p[k] =0

((p[a]^m-p[n+1]^m) mod Π[k=1~n]p[k] =0

p[n+1]^m mod Π[k=1~n]p[k] =1を満たすmがあるとき
n+1番目以上の素数のm乗からn+1番目の素数のm乗を引いた数は1からn番目の素数積で割り切れる。
481: 2024/02/03(土)21:12 ID:RnpFDdRt(6/11) AAS
(9817^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
(104717^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
(1299709^(2^4×3^2×5×11)-29^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
482: 2024/02/03(土)21:16 ID:RnpFDdRt(7/11) AAS
p[n+1]^m mod Π[k=1~n]p[k] =1を満たすmがあるとき
n+1番目以上の素数[a]のm乗からn+1番目以上の素数[b]のm乗を引いた数は1からn番目の素数積で割り切れる。
p[a]>>>>p[b]

(1299709^(2^4×3^2×5×11)-37^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
(82562383^(2^4×3^2×5×11)-7919^(2^4×3^2×5×11) ) mod (2*3*5*7*11*13*17*19*23)=0
1-
あと 219 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.024s