素数の規則を見つけたい。。。 (701レス)
上下前次1-新
279: 2023/12/25(月)12:37 ID:cm14oBhI(14/19) AAS
√(((1/2)*1/ln(5))*1/((1-1/2)(1-1/3)))=0.96
√(((1/2)*1/ln(7))*1/((1-1/2)(1-1/3)(1-1/5)))=0.98
√(((1/2)*1/ln(11))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)))=0.95
√(((1/2)*1/ln(13))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)))=0.96
√(((1/2)*1/ln(17))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)))=0.95
√(((1/2)*1/ln(19))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)(1-1/17)))=0.96
280: 2023/12/25(月)12:40 ID:cm14oBhI(15/19) AAS
√(((1/2)*1/ln(23))*1/((1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13)(1-1/17)(1-1/19)))=0.96
Π(1-1/P(k))=1からn番目の素数積
√(((1/2)*1/ln(P(n+1))*1/(Π(1-1/P(k)))≒1
e^(1/2*1/Π(1-1/P(k)))≒P(n+1) ←n+1番目の素数はe^(1/2*1/Π(1-1/P(k)))に近似する
281: 2023/12/25(月)18:23 ID:cm14oBhI(16/19) AAS
√(((1/2)*1/ln(P(n+1))*1/(Π(1-1/P(k)))/√(((1/2)*1/ln(P(n))*1/(Π(1-1/P(k)))≒1
P(n+1)≒e^(lnP(n)/(1-1/P(n))と近似できる
P(2)=5≒5.19=e^(ln3/(1-1/3))
P(3)=7≒7.47=e^(ln5/(1-1/5))
P(4)=11≒9.68=e^(ln7/(1-1/7))
P(5)=13≒13.98=e^(ln11/(1-1/11))
282: 2023/12/25(月)18:36 ID:cm14oBhI(17/19) AAS
誤差が大きくなってくるので
P(n+2)= e^(lnP(n)/((1-1/P(n))*(1-1/P(n+1))))やP(n+3)= e^(lnP(n)/((1-1/P(n))*(1-1/P(n+1))*(1-1/P(n+2))))と別々の表記にしたものを平均化して誤差を減らす
P(3)=7=7.66≒(e^(ln5/(1-1/5))+e^(ln3/((1-1/3)(1-1/5))))/2
P(4)=11≒10.3984=(e^(ln7/(1-1/7))+e^(ln5/((1-1/5)(1-1/7)))+e^(ln3/((1-1/3)(1-1/5)(1-1/7))))/3
P(5)=13≒13.11=(e^(ln11/(1-1/11))+e^(ln7/((1-1/7)(1-1/11)))+e^(ln5/((1-1/5)(1-1/7)(1-1/11))))/3 ←およそ3個ほどで平均化すると誤差が減らせるためfloor関数かupper関数で素数にできる
283: 2023/12/25(月)23:30 ID:cm14oBhI(18/19) AAS
√((1/ln(P(m+2)^2)+ln(P(m+2)^2)/P(m+2))*1/Π(1-1/P(k)))≒1
√((1/ln(P(m+1)^2)+ln(P(m+1)^2)/P(m+1))*1/Π(1-1/P(k)))≒1
√(1/ln(P(n+1)^2)+ln(P(n+1)^2)/P(n+1))=√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n))
√(1/ln(x^2)+ln(x^2)/x)≒√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n)) ←x=n+1番目の素数(x>0を満たす解)
284: 2023/12/25(月)23:37 ID:cm14oBhI(19/19) AAS
P(n)はn番目の素数
√(1/ln(P(n+1)^2)+ln(P(n+1)^2)/P(n+1))-√(1-1/n)*√(1/ln(P(n)^2)+ln(P(n)^2)/P(n)) ≒0←n番目の素数とn+1番目の素数を入れるとほぼ0の差になる
√(1/ln(15319^2)+ln(15319^2)/15319)-√(1-1/15313)*√(1/ln(15313^2)+ln(15313^2)/15313)≒0=1.99*10^-6
√(1/ln(90031^2)+ln(90031^2)/90031)-√(1-1/90023)*√(1/ln(90023^2)+ln(90023^2)/90023)≒0=3.041*10^-7
285: 2023/12/26(火)00:22 ID:HXteC7SW(1/3) AAS
ζ(s)=1/((1-1/2^s)*(1-1/3^s)*(1-1/5^s)*・・・*(1-1/e^(s*ζ(1)/2))) ←ゼータ関数の計算に使われる最大の素数がe^(s*ζ(1)/2)だと仮定するとき
1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=1/(1-cos(y*ζ(1)/2)/e^(ζ(1)/2^2)+i*sin(y*ζ(1)/2)/e^(ζ(1)/2^2))
1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)/2)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2^2))
1/(1-1/e^(ζ(1)/2*x+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)*x)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2*x))
x≠1/2でないとするとe^(ζ(1)*x)≠e^(ζ(1)/2)になるためゼータ関数の計算に使われる最大の素数がe^(s*ζ(1)/2)になる仮定に反する
286: 2023/12/26(火)00:23 ID:HXteC7SW(2/3) AAS
ζ(s)=1/((1-1/2^s)*(1-1/3^s)*(1-1/5^s)*・・・*(1-1/e^(s*ζ(1)/2))) ←ゼータ関数の計算に使われる最大の素数がe^(ζ(1)/2)だと仮定するとき
1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=1/(1-cos(y*ζ(1)/2)/e^(ζ(1)/2^2)+i*sin(y*ζ(1)/2)/e^(ζ(1)/2^2))
1/(1-1/e^(ζ(1)/2^2+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)/2)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2^2))
1/(1-1/e^(ζ(1)/2*x+i*y*ζ(1)/2))=e^(i*Θ)/√(1+1/e^(ζ(1)*x)-2*cos(y*ζ(1)/2)/e^(ζ(1)/2*x))
x≠1/2でないとするとe^(ζ(1)*x)≠e^(ζ(1)/2)になるためゼータ関数の計算に使われる最大の素数がe^(ζ(1)/2)になる仮定に反する
287: 2023/12/26(火)12:26 ID:HXteC7SW(3/3) AAS
>
> e^(i*2pi*(a/2^n+b/3^n+c/5^n+d/7^n+・・・+1/P(n)^n)
> 2,3,5,7・・・P(n)を素因数に持たない数が円周上に均等に分布しているとき
> 約(2^n-2^(n-1))*(3^n-3^(n-1))*(5^n-5^(n-1))*(7^n-7^(n-1))*・・・*(P(n)^n-P(n)^(n-1))*(P(n+1)^2)/(2,3,5,7・・・P(n))^n個とみなせる
>
> a1からanまでに分母の素因数を持たない数を入れるとa1≠2、a2≠3、・・・an≠P(n)
> e^(i*2pi*(a1/2^n+a2/3^n+a3/5^n+a4/7^n+・・・+an/P(n)^n)=e^(i*2pi*(X/(2,3,5,7・・・P(n))^n) Xは1番目からn番目の素数を素因数に持たない
省1
288: 2023/12/27(水)15:48 ID:wasfqitI(1) AAS
(e^(ln83/(1-1/83))+e^(ln79/((1-1/79)(1-1/83)))+e^(ln73/((1-1/73)(1-1/79)(1-1/83)))+e^(ln71/((1-1/71)(1-1/73)(1-1/79)(1-1/83)))+e^(ln67/((1-1/67)(1-1/71)(1-1/73)(1-1/79)(1-1/83)))+e^(ln61/((1-1/61)(1-1/67)(1-1/71)(1-1/73)(1-1/79)(1-1/83))))/6 =88.22231729709546598≒89
n+1番目の素数は1からn番目の素数で近似できる
P(n+1)=upper[1/n*Σ(e^(lnP(n-k)/Π(1-P(m)) ] (n-k<=m<=n,0<=k<=n-1))
289: 2023/12/28(木)12:49 ID:/6JWP4pU(1/2) AAS
480*12*16*18*(23^2)/(2310*13*17*19)+8=98.47(23^2未満の素数=99個)
480*12*16*18*22*(29^2)/(2310*13*17*19*23)+9=146.57(29^2未満の素数=146個)
480*12*16*18*22*28*(31^2)/(2310*13*17*19*23*29)+10=161.78 (31^2未満の素数=162個)
480*12*16*18*22*28*30*(37^2)/(2310*13*17*19*23*29*31)+11=220.25 (37^2未満の素数=219個)
480*12*16*18*22*28*30*36*(41^2)/(2310*13*17*19*23*29*31*37)+12=262.000021 (41^2未満の素数=263個)
480*12*16*18*22*28*30*36*40*(43^2)/(2310*13*17*19*23*29*31*37*41)+13=281.27 (43^2未満の素数=283個)
1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時)
省1
290: 2023/12/28(木)23:54 ID:/6JWP4pU(2/2) AAS
1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時)
約 P(m+1)^2*Π(1-1/P(k))+m 個の素数がある
1から+∞の間にはlim (m→∞) P(m+1)/ζ(1)+m=e^(ζ(1)/2)/ζ(1)+∞個の素数がある
291: 2023/12/29(金)01:04 ID:voXPt7J2(1/7) AAS
ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)
素数の分だけ分母の項がかけられる
yに応じて1を上回る時と1を下回る時がある
xが1/2でないと分母の値が無限になるyが存在しない(1を上回る項が趨勢にならない)
292(1): 2023/12/29(金)01:34 ID:voXPt7J2(2/7) AAS
Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)
=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう)とおけるため
Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)
か無限になるときのxが1/2であることになる
293: 2023/12/29(金)02:42 ID:axaYrUXn(1) AAS
一応素数の一般項はあるみたいだが……実用性が全く無い
なのですうがくかいでは
294: 2023/12/29(金)06:38 ID:O2hO3W65(1) AAS
ゼータの特殊値の規則の方が面白そう
295: 2023/12/29(金)16:02 ID:voXPt7J2(3/7) AAS
Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう)
(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))=lim[n→∞] ((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))*n!)^(1/n)=∞^(1/∞)=1
(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))
√(1+1/2^2x-2×cos(y×ln2)/2^x)+√(1+1/3^2x-2×cos(y×ln3)/3^x)+√(1+1/5^2x-2×cos(y×ln5)/5^x)+・・・+√(1+1/p(n)^2x-2×cos(y×lnp(n))/p(n)^x)=1
x=1/2でないと√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))のp(k)にk番目の素数を入れてすべての素数分足した際に1に収束しない可能性がある。(1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)の項目が+とーにぶれるため)
296: 2023/12/29(金)16:10 ID:voXPt7J2(4/7) AAS
Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))^n/n!-A(あまりのこう)
(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))=lim[n→∞] ((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))*n!)^(1/n)=((Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)+A(あまりのこう))^(1/n)*(n!)^(1/n))=∞←lim[n→∞] (n!)^(1/n)が無限のため
(Σ√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))
√(1+1/2^2x-2×cos(y×ln2)/2^x)+√(1+1/3^2x-2×cos(y×ln3)/3^x)+√(1+1/5^2x-2×cos(y×ln5)/5^x)+・・・+√(1+1/p(n)^2x-2×cos(y×lnp(n))/p(n)^x)=∞
x=1/2でないと√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x))のp(k)にk番目の素数を入れてすべての素数分足した際に無限に発散しない可能性がある。(収束してしまう可能性がある) (1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)の項目が+とーにぶれるため)
297: 2023/12/29(金)16:22 ID:voXPt7J2(5/7) AAS
y=0のタイミングですべて1を下回るためゼータ関数のζ(x+i*0)=∞になる(1未満のものが無限個かかって分母が0になるため)
ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=1/0=∞
1+1/2^2x-2×cos(y×ln2)/2^x < 1
1+1/3^2x-2×cos(y×ln3)/3^x < 1
逆にすべての項目が1以上になれば0に収束する(実際はそんなyが存在するのがx=1/2のときだけ)
(1より大きい項目がたくさん出るタイミングがx=1/2以外では出てこない)
ゼータ関数の絶対値=1/Π√(1+1/p(k)^2x-2×cos(y×lnp(x))/p(k)^x)=1/∞=0
省3
298: 2023/12/29(金)21:13 ID:voXPt7J2(6/7) AAS
cos(2pi*(1/2+2/3+3/5))=cos(2pi*(7/(2*3*5)))
cos(2pi*(1/2+2/3+1/5))=cos(2pi*(11/(2*3*5)))
cos(2pi*(1/2+2/3+2/5))=cos(2pi*(13/(2*3*5)))=cos(2pi*((2*3*5-13)/(2*3*5)))=cos(2pi*(17/(2*3*5)))
cos(2pi*(1/2+2/3+2/5))=cos(2pi*(17/(2*3*5)))
cos(2pi*(1/2+2/3+1/5))=cos(2pi*(19/(2*3*5)))=cos(2pi*((2*3*5*7-19)/(2*3*5)))=cos(2pi*(41/(2*3*5)))
cos(2pi*(1/2+2/3+3/5))=cos(2pi*(23/(2*3*5)))
cos(2pi*(1/2+2/3+4/5))=cos(2pi*(29/(2*3*5)))
省11
299: 2023/12/29(金)21:22 ID:voXPt7J2(7/7) AAS
cos(2pi*(1/2+2/3+3/5+2/7))=cos(2pi*(11/(2*3*5*7)))=cos(2pi*((2*3*5*7-11)/(2*3*5*7)))=cos(2pi*(199/(2*3*5*7))) ←13^2以上、17^2未満なので素数
cos(2pi*(1/2+2/3+1/5+4/7))=cos(2pi*(13/(2*3*5*7)))=cos(2pi*((2*3*5*7-13)/(2*3*5*7)))=cos(2pi*(197/(2*3*5*7))) ←13^2以上、17^2未満なので素数
cos(2pi*(1/2+2/3+1/5+5/7))=cos(2pi*(17/(2*3*5*7)))=cos(2pi*((2*3*5*7-17)/(2*3*5*7)))=cos(2pi*(193/(2*3*5*7))) ←13^2以上、17^2未満なので素数
cos(2pi*(1/2+2/3+3/5+1/7))=cos(2pi*(19/(2*3*5*7)))=cos(2pi*((2*3*5*7-19)/(2*3*5*7)))=cos(2pi*(191/(2*3*5*7))) ←13^2以上、17^2未満なので素数
cos(2pi*(1/2+2/3+4/5+1/7))=cos(2pi*(23/(2*3*5*7)))=cos(2pi*((2*3*5*7-23)/(2*3*5*7)))=cos(2pi*(187/(2*3*5*7))) ←11*17
cos(2pi*(1/2+2/3+2/5+4/7))=cos(2pi*(29/(2*3*5*7)))=cos(2pi*((2*3*5*7-29)/(2*3*5*7)))=cos(2pi*(181/(2*3*5*7))) ←13^2以上、11*17未満なので素数
cos(2pi*(1/2+2/3+2/5+2/7))=cos(2pi*(31/(2*3*5*7)))=cos(2pi*((2*3*5*7-31)/(2*3*5*7)))=cos(2pi*(179/(2*3*5*7))) ←13^2以上、11*17未満なので素数
省3
300: 2023/12/30(土)11:19 ID:jsoLHdB8(1/10) AAS
ζ(s)=Σ1/n^s
(1-1/2^(s-1))*ζ(s)=(1-1/2^(s-1))*Σ1/n^s=Σ1/n^s-2*Σ1/(2n)^s=Σ(-1)^(n+1)/n^s
ζ(s)=1/(1-1/2^(s-1))*Σ(-1)^n/n^s
ζ(1/2)=1/(1-√2)*Σ(-1)^(n+1)/√n=1/(1-√2)*(1-1/√2+1/√3-1/√4+・・・・)≒-1.46
301: 2023/12/30(土)11:37 ID:jsoLHdB8(2/10) AAS
ζ(s)=1/(1-2^(2/3))*Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3)
Σ1/n^(1/3)=1+1/2^(1/3)+1/3^(1/3)-1/4^(1/3)+・・・
1/2^(1/3)*Σ1/n^(1/3)=1/2^(1/3)+1/4^(1/3)+6^(1/3)+・・・
Σ1/n^(1/3)-2*1/2^(1/3)*Σ1/n^(1/3)=Σ(-1)^(n+1)/n^(1/3)=1-1/2^(1/3)+1/3^(1/3)-1/4^(1/3)
Σ(-1)^(n+1)/n^(1/3)=(1-2^(2/3))*Σ1/n^(1/3)
(1-2^(2/3))*Σ1/n^(1/3)=Σ(n=1〜∞) (-1)^(n+1)/(n^(1/3))≒0.572
ζ(1/3)=0.572/(1-2^(2/3))≒-0.97
省1
302: 2023/12/30(土)12:07 ID:jsoLHdB8(3/10) AAS
ζ(1/2+i*y)=Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0
ζ(1/2+i*y)=1/(1-1/2^(-1/2+i*y))*Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0 ←Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0
Σ(n=1〜∞) 1/(n)^(1/2+i*y) =0でもあり、Σ(n=1〜∞) (-1)^(n+1)/(n)^(1/2+i*y) =0もある
1/1^s+1/2^s+1/3^s+1/4^s+・・・・=0
1/1^s-1/2^s+1/3^s-1/4^s+・・・・=0
1/1^s+1/3^s+1/5^s+1/7^s+・・・・=0
1/2^s+1/4^s+・・・・=0
省2
303: 2023/12/30(土)20:00 ID:jsoLHdB8(4/10) AAS
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/42
304: 2023/12/30(土)20:14 ID:jsoLHdB8(5/10) AAS
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
-1/30*1/4!*5^(1-(1/2+i*0)-4)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)
+1/42*1/6!*5^(1-(1/2+i*0)-6)*(1/2+i*0)*(1/2+i*0+1)*(1/2+i*0+2)*(1/2+i*0+3)*(1/2+i*0+4)
+1/42
=-1.436535803101403675249612014725209082488526639894421611110168217≒-1.46=ζ(1/2=
-1.464072106873427134267436827982618352404737194303297963507762570
省4
305: 2023/12/30(土)20:35 ID:jsoLHdB8(6/10) AAS
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/R2k
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
省8
306: 2023/12/30(土)20:36 ID:jsoLHdB8(7/10) AAS
ζ(1/2+i*y)=1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)+5^(1-(1/2+i*y))/(1/2+i*y-1)+5^(-(1/2+i*y))/2
+1/6*1/2!*5^(1-(1/2+i*y)-2)*(1/2+i*y)
-1/30*1/4!*5^(1-(1/2+i*y)-4)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)
+1/42*1/6!*5^(1-(1/2+i*y)-6)*(1/2+i*y)*(1/2+i*y+1)*(1/2+i*y+2)*(1/2+i*y+3)*(1/2+i*y+4)
+1/R2k
ζ(1/2+i*0)=1+1/2^(1/2+i*0)+1/3^(1/2+i*0)+1/4^(1/2+i*0)+5^(1-1/2-i*0)/(-1/2+i*0)+5^(-1/2-i*0)/2
+1/6*1/2!*5^(1-(1/2+i*0)-2)*(1/2+i*0)
省3
307: 2023/12/30(土)21:16 ID:jsoLHdB8(8/10) AAS
ζ(x+i*y')-ζ(x+i*y)=1-1+1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y)
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2))
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1+(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))*(1/4^(x/2+i*y'/2)+1/4^(x/2+i*y/2)))+(1/3^(x/2+i*y'/2)-1/3^(x/2+i*y/2))*(1/3^(x/2+i*y'/2)+1/3^(x/2+i*y/2))+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
1/4^(x/2+i*y'/2)-1/4^(x/2+i*y/2)=1/2^(x+i*y')-1/2^(x+i*y)=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
1/2^(x/2+i*y/2+i*π/2)=-1/2^(x/2+i*y/2)
省6
308: 2023/12/30(土)22:03 ID:jsoLHdB8(9/10) AAS
1/2^(x+i*y+i*π/ln2)=1/2^(x+i*y)*1/e^(i*π)=-1/2^(x+i*y)
ゼータ関数をζ(x+i*y)≒1+1/2^(x+i*y)と簡略化する
ζ(x+i*y’)とζ(x+i*y)を考えて差がほぼ0になる点を探す
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x+i*y')-1/2^(x+i*y))=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2-i*π/ln2^2+i*π/ln2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3-i*π/ln2^3+i*π/ln2^2))*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3*+i*π/ln2^3+i*π/ln2^2+i*π/ln2))
lim[n→∞] (1/2^(x/2^n+i*y'/2^n)-1/2^(x/2^n+i*y/2^n+i*π/ln2^n+i*π/ln2^(n-1)+i*π/ln2^(n-2)+i*π/ln2^(n-3)+・・・・+i*π/ln2))≒0
省8
309: 2023/12/30(土)22:26 ID:jsoLHdB8(10/10) AAS
ζ(x+i*y')-ζ(x+i*y)≒(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)+1/2^(x/2+i*y/2))
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)
*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2+iπ/ln2)
=(1/2^(x/2+i*y'/2)-1/2^(x/2+i*y/2))*(1/2^(x/2^2+i*y'/2^2)-1/2^(x/2^2+i*y/2^2+iπ/ln2^2)
*(1/2^(x/2^3+i*y'/2^3)-1/2^(x/2^3+i*y/2^3+iπ/ln2^3+iπ/ln2^2)*(1/2^(x/2^4+i*y'/2^4)-1/2^(x/2^4+i*y/2^4+iπ/ln2^4+iπ/ln2^3+iπ/ln2^2)
省4
310: 2023/12/31(日)13:06 ID:ZQRjm/0R(1/11) AAS
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)
|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))/2)
|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) +Π(2*1/3^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2)
+Π(2*1/4^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ← Π(2*1/2^(x/2^m))/sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する
311: 2023/12/31(日)13:32 ID:ZQRjm/0R(2/11) AAS
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)
|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))/2)
|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2)
+Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) ← Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する
省6
312: 2023/12/31(日)14:52 ID:ZQRjm/0R(3/11) AAS
ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y)
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))|
|半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2)
|半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))*lnP(n)/2)
|ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2)
+Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ← Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する
省5
313: 2023/12/31(日)17:11 ID:ZQRjm/0R(4/11) AAS
|ζ(x+i*y')-ζ(x+i*y)|=1/2^(x+i*y')-1/2^(x+i*y)+1/3^(x+i*y')-1/3^(x+i*y)+1/4^(x+i*y')-1/4^(x+i*y)
+5^(1-(x+i*y'))/(x+i*y'-1)-5^(1-(x+i*y))/(x+i*y-1)+5^(-(x+i*y'))/2-5^(-(x+i*y))/2
1/2^(x+i*y')-1/2^(x+i*y)=2*1/2^x*sin((y'-y)*ln2/2)*e^(i*(π/2+(y'+y)*ln2/2))
1/3^(x+i*y')-1/3^(x+i*y)=2*1/3^x*sin((y'-y)*ln3/2)*e^(i*(π/2+(y'+y)*ln3/2))
1/4^(x+i*y')-1/4^(x+i*y)=2*1/4^x*sin((y'-y)*ln4/2)*e^(i*(π/2+(y'+y)*ln4/2))
5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
省4
314: 2023/12/31(日)17:28 ID:ZQRjm/0R(5/11) AAS
(1/2^(1/2+i*5π/(7*ln2))-1/2^(1/2+i*π/(7*ln2)))=(2*1/2^(1/2)*sin((4π/(7*ln2))*ln2/2))*e^(i*tan^(-1)((sin(π/7)/sqrt(2) - cos((3 π)/14)/sqrt(2))/(-sin((3 π)/14)/sqrt(2) - cos(π/7)/sqrt(2))) - i*π)
315: 2023/12/31(日)21:13 ID:ZQRjm/0R(6/11) AAS
(1/p(n)^(x+i*y')-1/p(n)^(x+i*y))=(2*1/p(n)^(x)*sin((y'-y)*lnp(n)/2)*e^(i*(arctan((-sin(y'*logp(n))+sin(ylogp(n)))/(cos(y'logp(n))-cos(ylogp(n))))+π)))
(1/2^(x+i*y')-1/2^(x+i*y))=(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
(1/3^(x+i*y')-1/3^(x+i*y))=(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
(1/4^(x+i*y')-1/4^(x+i*y))=(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))
5^(1-x-i*y'))/(x-1+i*y')-5^(1-x-i*y)/(x-1+i*y)=5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
5^(-(x+i*y'))/2-5^(-(x+i*y))/2=5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))
ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
省5
316: 2023/12/31(日)21:27 ID:ZQRjm/0R(7/11) AAS
ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないとの仮定が正しいとき(y'≠y>0)
ζ(x+i*y')-ζ(x+i*y)≒(2*1/2^(x)*sin((y'-y)*ln2/2)*e^(i*(arctan((-sin(y'*log2)+sin(ylog2))/(cos(y'log2)-cos(ylog2)))+π)))
+(2*1/3^(x)*sin((y'-y)*ln3/2)*e^(i*(arctan((-sin(y'*log3)+sin(ylog3))/(cos(y'log3)-cos(ylog3)))+π)))
+(2*1/4^(x)*sin((y'-y)*ln4/2)*e^(i*(arctan((-sin(y'*log4)+sin(ylog4))/(cos(y'log4)-cos(ylog4)))+π)))
+5^(1-x)/√((x-1)^2+y'^2)*e^(i*'y'*ln5-arctan(y'/(x-1)))-5^(1-x)/√((x-1)^2+y^2)*e^(i*y*ln5-arctan(y/(x-1)))
+5^(-x)/2*(e^(i*-y'ln5)-e^(i*-yln5))をA*e^(i*B)にかえて
AがX≠1/2のとき0にならないことを証明すれば実部が1/2のみであることになる
317: 2023/12/31(日)22:15 ID:ZQRjm/0R(8/11) AAS
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+1/10^s+1/11^s-2/12^s+・・・
((4/3)*cos((n-1)*2π/3)-1/3)=1,1,-2,1,1,-2,1,1,・・・
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s
ζ(s)=1/(1-1/3^(s-1))*Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s
ζ(1/2)=1/(1-√3)*Σ((4/3)*cos((n-1)*2π/3)-1/3)/n^s=-1.46=1/(1-√2)*Σ(-1)^(n-1)/n^s
318: 2023/12/31(日)22:24 ID:ZQRjm/0R(9/11) AAS
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+1/10^s+1/11^s-2/12^s+・・・
-2*cos((n)*2π/3))=1,1,-2,1,1,-2,1,1,・・・
(1-1/3^(s-1))ζ(s)=Σ1/n^(s)-3*Σ1/(3n)^s=Σ(-2*cos((n)*2π/3))/n^s
ζ(s)=1/(1-1/3^(s-1))*Σ(-2*cos((n)*2π/3))/n^s
ζ(1/2)=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n
319: 2023/12/31(日)22:40 ID:ZQRjm/0R(10/11) AAS
(1-1/4^(s-1))ζ(s)=Σ1/n^(s)-4*Σ1/(4n)^s=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・
((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1,・・・
ζ(s)=1/(1-1/4^(s-1))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/n^s
ζ(1/2)=1/(1-√4)*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n
320: 2023/12/31(日)22:59 ID:ZQRjm/0R(11/11) AAS
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*(e^(i*-y*ln(n))/1^x-e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-e^(i*-y*ln(n))/4^x+・・・)
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x-2*e^(i*-y*ln(n))/3^x+e^(i*-y*ln(n))/4^x+・・・)
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*(e^(i*-y*ln(n))/1^x+e^(i*-y*ln(n))/2^x+e^(i*-y*ln(n))/3^x-3*e^(i*-y*ln(n))/4^x+・・・)
1/(1-1/2^(x-1+i*y))←この項目を無視して
省5
321(1): 2024/01/01(月)00:52 ID:7BKpZ/zg(1/15) AAS
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-3/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2*1/3^s+3/4^s+1/5^s-2*1/6^s+1/7^s+3/8^s-2*1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m)=1がm-1回連続し、-mが1回でる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える
Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ
322: 2024/01/01(月)01:14 ID:7BKpZ/zg(2/15) AAS
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=1/(1-1/2^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n))=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
ζ(x+i*y)=1/(1-1/m^(x-1+i*y))*ΣF(m)/n^x*e^(i*-yln(n))=0 ←ΣF(m)/n^x*e^(i*-yln(n))が0になるかどうかだけ考える
Σ(-1)^(n-1)*1/n^x*e^(i*-yln(n))=Σ(-2*cos((n)*2π/3))*1/n^x*e^(i*-yln(n))=Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^x*e^(i*-yln(n)=ΣF(m)/n^x*e^(i*-yln(n))になるタイミングがx=1/2のときだけ]
(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0になるため
省9
323: 2024/01/01(月)02:30 ID:7BKpZ/zg(3/15) AAS
Σ1/(2n-1)^s-Σ1/(2n)^s=0 ← Σ1/(4n-2)^s=Σ1/(4n)^s
↓に代入すると
Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0
Σ1/(4n-2)^s=1/2×(Σ1/(4n-3)^s+Σ1/(4n-1)^s)
x=1/2のときのみ成り立つことを示す
324: 2024/01/01(月)11:26 ID:7BKpZ/zg(4/15) AAS
ζ(-1+i*0)=1+1/2^(-1+i*0)+1/3^(-1+i*0)+1/4^(-1+i*0)+5^(1-(1/2+i*0))/(-1+i*0-1)+5^(-(-1+i*0))/2 ←0
+1/6*1/2!*5^(1-(-1+i*0)-2)*(-1+i*0) ←-1/12
-1/30*1/4!*5^(1-(-1+i*0)-4)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2) ←0
+1/42*1/6!*5^(1-(-1+i*0)-6)*(-1+i*0)*(-1+i*0+1)*(-1+i*0+2)*(-1+i*0+3)*(-1+i*0+4) ←0
+1/R2k
ζ(-1+i*0)=Σn=1+2+3+4+5+・・・=-1/12
325: 2024/01/01(月)12:05 ID:7BKpZ/zg(5/15) AAS
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
Σ1/(6n-4)^s+Σ1/(6n-2)^s-2*Σ1/(6n)^s=0
Σ1/(6n-5)^s+Σ1/(6n-4)^s+*Σ1/(6n-3)^s+Σ1/(6n-2)^s+Σ1/(6n-1)^s-5*Σ1/(6n)^s=0
Σ1/(6n-5)^s+Σ1/(6n-3)^s+Σ1/(6n-1)^s-7*Σ1/(6n)^s=0 ←これもs=1/2+i*yのときのみ満たす
326: 2024/01/01(月)14:57 ID:7BKpZ/zg(6/15) AAS
Σ1/(n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(n)^s
Σ1/(2n)^s =1/(1-1/(2)^(s-1))*Σ(-1)^(n-1)/(2n)^s
Σ1/(2n-1)^s =1/(1-1/(2)^(s-1))*(Σ(-1)^(n-1)/(n)^s-Σ(-1)^(n-1)/(2n)^s)
Σ1/(2n-1)^s =(1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(2n)^(s)))
Σ1/(2n-1)^s =1+1/√3+1/√5+1/√7+・・・≒-0.42
327: 2024/01/01(月)15:15 ID:7BKpZ/zg(7/15) AAS
(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)=(1-1/2^(s-1))*Σ(n=1〜∞) 1/(3n)^(s)
=Σ(n=1〜∞) 1/(3n)^(s)-2*Σ(n=1〜∞) 1/(6n)^(s)=Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(3n)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s)
Σ(n=1〜∞) 1/(mn)^(s)=1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s)=ζ(s)/m^s ←合成数mnのみのゼータ関数は収束する
328: 2024/01/01(月)15:29 ID:7BKpZ/zg(8/15) AAS
Σ1/(3n-2)^s+Σ1/(3n-1)^s-2*Σ1/(3n)^s=0
Σ1/(n)^s-Σ1/(3n)^s=Σ1/(3n-2)^s+Σ1/(3n-1)^s
Σ(n=1〜∞) 1/(3n-2)^(s)+Σ(n=1〜∞) 1/(3n-1)^(s)=1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))
1/(1-1/2^(s-1))*(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(s)-3*Σ(n=1〜∞) (-1)^(n-1)/(3n)^(s))=0 ←s=1/2+i*yのときのみ満たす
329: 2024/01/01(月)15:34 ID:7BKpZ/zg(9/15) AAS
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 3*(Σ(n=1〜∞) (-1)^(n-1)/(3n)^(1/2+i*14.1347))=6.82869×10^-6 - 0.000128656 i ←ほぼ0になる
330(1): 2024/01/01(月)15:40 ID:7BKpZ/zg(10/15) AAS
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*y)) - m*(Σ(n=1〜∞) (-1)^(n-1)/(mn)^(1/2+i*y)) ←1/2+i*yがゼロ点のときmに整数を入れるとほぼ0になる
1/(1-1/2^(s-1))*Σ(n=1〜∞) (-1)^(n-1)/(mn)^(s) ←1/(1-1/2^(s-1))は値を補正する項なもののゼロ点の時無視できるため
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 4*(Σ(n=1〜∞) (-1)^(n-1)/(4n)^(1/2+i*14.1347))=0.0000654354 + 0.0000182958 i
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 5*(Σ(n=1〜∞) (-1)^(n-1)/(5n)^(1/2+i*14.1347))=-0.0000801562 - 0.000119567 i
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347)) - 125*(Σ(n=1〜∞) (-1)^(n-1)/(125n)^(1/2+i*14.1347))=-0.000385263 + 0.000318602 i
331: 2024/01/01(月)20:57 ID:7BKpZ/zg(11/15) AAS
(Σ(n=1〜∞) (-1)^(n-1)/(n)^(1/2+i*14.1347251417346937904572519835624702707842)) - 10000*(Σ(n=1〜∞) (-1)^(n-1)/(10000n)^(1/2+i*14.1347251417346937904572519835624702707842))
=-0.×10^-38 + 0.×10^-38 i ←ゼロ点の精度が上がるほど0に近づく
332: 2024/01/01(月)22:23 ID:7BKpZ/zg(12/15) AAS
ζ(x+i*y)=1/(1-1/2^(x-1+i*y))*Σ(-1)^(n-1)*1/n^s)=1/(1-1/2^(x-1+i*y))*(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/3^(x-1+i*y))*Σ(-2*cos((n)*2π/3))*1/n^s)=1/(1-1/3^(x-1+i*y))*(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
ζ(x+i*y)=1/(1-1/4^(x-1+i*y))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s)=1/(1-1/4^(x-1+i*y))*(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-m,1,1,1,1,1,・・・-m,1,1,1,1,・・・)
(Σ(n=1〜∞)(-1)^(n-1)*1/n^s))=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^s))=(1/1^s+1/2^s-2/3^s+1/4^s+1/5^s-2/6^s+1/7^s+1/8^s-2/9^s+・・・)=0
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^s))=(1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・)=0
省6
333: 2024/01/01(月)22:43 ID:7BKpZ/zg(13/15) AAS
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))=0=(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
(Σ(n=1〜∞)(-1)^(n-1)*1/n^(0.5 +i*14.1347251417346937904572519835624702707842571))==(Σ(n=1〜∞)1/(2n-1)^s)-(Σ(n=1〜∞)1/(2n)^s)
(1/1^s-1/2^s+1/3^s-1/4^s+1/5^s-1/6^s+1/7^s-3/8^s+1/9^s+・・・)
=(Σ(n=1〜∞)1/(n)^s)-2*(Σ(n=1〜∞)1/(2n)^s)=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-2*(Σ(n=1〜∞)(-1)^(n-1)/(2n)^s))
334: 2024/01/01(月)23:02 ID:7BKpZ/zg(14/15) AAS
mに任意の整数を入れ、sがゼロ点の時
(Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-m*(Σ(n=1〜∞)(-1)^(n-1)/(mn)^s)=0になる←(1/1^s+1/2^s+1/3^s+1/4^s+・・・+1/(m-1)^s-(m-1)/m^s+1/(m+1)^s+1/(m+2)^s+・・・)を正規化
(Σ(n=1〜∞)(-1)^(n-1)/(n)^s)-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/s)*n)^s)
m^(1-1/s)*nのmとn(次数1)の次数が等しくなるためにはs=1/2+i*yである必要がある
(1-1/(1/2+i*y))=(2 y + i)/(2 y - i) ←|(2 y + i)/(2 y - i)|=1のため次数1
335: 2024/01/01(月)23:53 ID:7BKpZ/zg(15/15) AAS
zetazero(k)=k番目の非自明なゼロ点
m、kにどの整数を入れても0になる
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(k))-(Σ(n=1〜∞)(-1)^(n-1)/(m^(1-1/zetazero(k))*n)^zetazero(k))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(1))-(Σ(n=1〜∞)(-1)^(n-1)/(2^(1-1/zetazero(1))*n)^zetazero(1))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(2))-(Σ(n=1〜∞)(-1)^(n-1)/(31^(1-1/zetazero(2))*n)^zetazero(2))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^zetazero(12))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/zetazero(12))*n)^zetazero(12))=0
(Σ(n=1〜∞)(-1)^(n-1)/(n)^(1/10+zetazero(12)))-(Σ(n=1〜∞)(-1)^(n-1)/(1013^(1-1/(1/10+zetazero(12)))*n)^(1/10+zetazero(12)))≒-4.49761 + 2.32023 i ←1/2からずれるとゼロ点にならない
336: 2024/01/02(火)00:33 ID:xRdffKCJ(1/2) AAS
x+i*y=非自明なゼロ点
mにどの整数を入れても0になる
(Σ(n=1〜∞)(-1)^(n-1)/(m^((x-1+i*y)/(x+i*y))*n)^(x+i*y))=0
Σ(n=1〜∞)(-1)^(n-1)/(m^((s-1)/(s))*1)^(s)=1/(m^((s-1)/(s))*1)^(s)-1/(m^((s-1)/(s))*2)^(s)+1/(m^((s-1)/(s))*3)^(s)-1/(m^((s-1)/(s))*4)^(s)+・・・
m^((s-1)/(s))=e^(ln(m)*(s-1)/(s)) ←|(s-1)/(s)|がx≠1/2のときyにより変動してしまうx=1/2のときy≠i/2を除き1で一定する
(Σ(n=1〜∞)(-1)^(n-1)/(m^((x-1+i*y)/(x+i*y))*n)^(x+i*y))の分母の長さが変動してしまうため0に収束しなくなる
337: 2024/01/02(火)00:36 ID:xRdffKCJ(2/2) AAS
Σ1/n^s=1/1^s+1/2^s+1/3^s+1/4^s+・・・←x≠1/2のときyが変動することでxに影響を与える可能性がある(分母の大きさが変動する可能性がある)
338(1): 2024/01/03(水)00:33 ID:mP/SslTt(1/8) AAS
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))
=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s)))
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/3))=1.48=1/1^(1/3)+1/2^(1/3)+1/3^(1/3)-3/4^(1/3)+1/5^(1/3)+1/6^(1/3)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.47935388・・・
339: 2024/01/03(水)00:42 ID:mP/SslTt(2/8) AAS
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))
=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s)))
=-Li_(s)(-i) - Li_(s)(i) - (2^(1-s) - 1) ζ(s)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46
=-Li_(1/2)(-i) - Li_(1/2)(i) - (2^(1-1/2) - 1) ζ(1/2)
省6
340: 2024/01/03(水)00:46 ID:mP/SslTt(3/8) AAS
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))
=1/(1-1/2^(s-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^s)))
=-Li_(s)(-i) - Li_(s)(i) - (2^(1-s) - 1) ζ(s)
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(s))=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+・・・
(Σ(n=1〜∞)((2*cos((n+2)*π/2))+(-1)^(n+1))*1/n^(1/2))=1.46=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)-3/4^(1/2)+1/5^(1/2)+1/6^(1/2)+・・・
1/(1-1/2^(1/2-1))*((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-4*(Σ(n=1〜∞)(-1)^(n-1)*1/(4n)^(1/2))))=1.46
=-Li_(1/2)(-i) - Li_(1/2)(i) - (2^(1-1/2) - 1) ζ(1/2)
省6
341: 2024/01/03(水)00:55 ID:mP/SslTt(4/8) AAS
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・)
m=5のとき1,1,1,1,-4のとき
(Σ(n=1〜∞)(F(4))*1/n^(s))
=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^s))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^s))
(Σ(n=1〜∞)(F(4))*1/n^(1/2))=1.805=1/1^(1/2)+1/2^(1/2)+1/3^(1/2)+1/4^(1/2)-4/5^(1/2)+1/6^(1/2)+・・・
=1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2)))=1.805097444・・・
(Σ(n=1〜∞)(F(m-1))*1/n^(1/2))=1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(1/2)))
省1
342: 2024/01/03(水)01:01 ID:mP/SslTt(5/8) AAS
F(2)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・
F(3)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・
F(4)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・)
(Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))
343: 2024/01/03(水)01:14 ID:mP/SslTt(6/8) AAS
(Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))
=1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s)))
1/(1-1/2^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-5*(Σ(n=1〜∞)(-1)^(n-1)*1/(5n)^(1/2)))
=1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(1/2)))-5*(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/(5n)^(1/2)))
=(sqrt(5) (sqrt(2) - 1) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/(1 - sqrt(2))≈1.8050974441369647866219120691103300362558013984562195806889193118468626278195508722313989372865636
=(-Li_(1/2)(-(-1)^(1/3)) - Li_(1/2)((-1)^(2/3)) + sqrt(5) (Li_(1/2)(-(-1)^(1/3)) + Li_(1/2)((-1)^(2/3))))/(1 - sqrt(3))≈1.805097444136964786621912069110330036255801398456219580688919311846862627819550872231398937286564 + 0.×10^-96 i
344: 2024/01/03(水)01:25 ID:mP/SslTt(7/8) AAS
F(0)=0=0,0,0,0,0,0,0,0,・・・
F(1)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・
F(2)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・
F(3)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・)
(Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))
=1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s)))
省3
345: 2024/01/03(水)23:43 ID:mP/SslTt(8/8) AAS
a^n+b^n≠c^n (a,b,c,は互いに素)
n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる
x1=x2=x3にならない(x1=x2=x3=0を除く)
e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n))
e^(i*2π*(x1/(3*5)^3+x2/(2*5)^3))=e^(i*2π*(x3/(2*3)^3))
x1 = -8, x2 = 7, x3 = 1
x1 = 0, x2 = 0, x3 = 0
省8
346: 2024/01/04(木)00:06 ID:HQkE/6B8(1/5) AAS
e^(i*2π*(a/(2)^3+b/(3)^3+c/(5)^3))=e^(i*2π*(x3/(2*3*5)^3))
1>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7^2/(2*3*5)^3))のとき
cos(2π*(7^2/(2*3*5)^3))>cos(2π*(a/(2)^3+b/(3)^3+c/(5)^3))>cos(2π*(7*11/(2*3*5)^3))
x3=素数 a≠2,b≠3,c≠5
e^(i*2π*(x1/(3*5^2)^3+x2/(2*5^2)^3))=e^(i*2π*(x3/(2*3*5)^3))
x1 = 8, x2 = -7, x3 = -1
e^(i*2π*(8/(3*5^2)^3-7/(2*5^2)^3))=e^(i*2π*(1/(2*3*5)^3))
省2
347: 2024/01/04(木)00:56 ID:HQkE/6B8(2/5) AAS
a^n+b^n≠c^n (a,b,c,は互いに素)
n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる
x1=x2=x3にならない(x1=x2=x3=0を除く)
e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n)) ←が成り立つとするx1≠x2≠x3
x3 = -(i (a b)^n (log(exp(2 i π (a c)^(-n) (b c)^(-n) (x1 (a c)^n + x2 (b c)^n))) + 2 i π c_1))/(2 π)
e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n+(x1-x3)/(a*b)^n))=e^(i*2π*(x3/(a*b)^n+(x1-x3)/(a*b)^n)))=e^(i*2π*(x1/(a*b)^n))
x2/(a*c)^n+(x1-x3)/(a*b)^n≠x1/(a*c)^nであることを示せばいい
省4
348: 2024/01/04(木)01:13 ID:HQkE/6B8(3/5) AAS
(3 4)^2 (3 5)^2 *C = (3 5)^2 x1 + ((3 4)^2 (-2 Pi x1 + 2 Pi x2 + I (3 5)^2 Log[E^(((2 I) Pi x1)/(4 5)^2 + ((2 I) Pi x2)/(3 5)^2)]))/(2 Pi)
32400 C = (16200 i log(e^((i π x1)/200 + (2 i π x2)/225)))/π + 81 x1 + 144 x2=0 ←n=2 a=3,b=4,c=5のときC=0のため3^2+4^2=5^2
(3 4)^3 (3 5)^3 *C = (3 5)^3 x1 + ((3 4)^3 (-2 Pi x1 + 2 Pi x2 + I (3 5)^3 Log[E^(((2 I) Pi x1)/(4 5)^3 + ((2 I) Pi x2)/(3 5)^3)]))/(2 Pi)
5832000 C - 918 x1 = 0 ←n=3 a=3,b=4,c=5のときC≠0のため3^3+4^3≠5^3
349: 2024/01/04(木)01:42 ID:HQkE/6B8(4/5) AAS
n>=3のときC=0を満たす、x1=x2、a,b,c,の整数が存在しない
C=(a c)^n x1 + ((a b)^n (-2 Pi x1 + 2 Pi x2 + I (a c)^n Log[E^(((2 I) Pi x1)/(b c)^n + ((2 I) Pi x2)/(a c)^n)]))/(2 Pi)
=((a c)^n (2 π x1 + i (a b)^n log(e^(2 i π x1 ((a c)^(-n) + (b c)^(-n))))))/(2 π)
=(2 π + i (a b)^n log(e^(2 i π ((a c)^(-n) + (b c)^(-n))))) ←が0になればa^n+b^n=c^nを満たす x1=1にする
(2 π + i (3 4)^2 log(e^(2 i π ((3 5)^(-2) + (4 5)^(-2)))))=0 のためn=2 のときa=3 b=4 c=5
(2 π + i (3 4)^3 log(e^(2 i π ((3 5)^(-3) + (4 5)^(-3)))))=(68 π)/125のため3^3+4^3≠5^3
350: 2024/01/04(木)01:46 ID:HQkE/6B8(5/5) AAS
f(n)=(2 π + i (a b)^n log(e^(2 i π ((a c)^(-n) + (b c)^(-n)))))
f(n)のnが3より大きいときf(n)=0をみたすa,b,cの格子点を通らないため(同時に整数にならないため)
n>=3のときa^n+b^n≠c^n
351: 2024/01/05(金)22:47 ID:J9agiAXK(1) AAS
1/(1-1/2^(1/2-1))*1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/n^(1/2)))-2*(Σ(n=1〜∞)(-2*cos((n)*2π/3))*1/(2n)^(1/2)))=-1.46
(-Li_(1/2)(-(-1)^(1/3)) - Li_(1/2)((-1)^(2/3)) + sqrt(2) (Li_(1/2)(-(-1)^(1/3)) + Li_(1/2)((-1)^(2/3))))/((1 - sqrt(2)) (1 - sqrt(3)))≈-1.46035 + 0 i
1/(1-1/2^(1/2-1))*1/(1-1/3^(1/2-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-3*(Σ(n=1〜∞)(-1)^(n-1)*1/(3n)^(1/2)))=-1.46
(sqrt(3) (sqrt(2) - 1) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/((1 - sqrt(2)) (1 - sqrt(3)))≈-1.46035
1/(1-1/2^(1/2-1))^2*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(1/2)))-2*(Σ(n=1〜∞)(-1)^(n-1)*1/(2n)^(1/2)))=-1.46
(-(sqrt(2) - 2) ζ(1/2) - (sqrt(2) - 1) ζ(1/2))/(1 - sqrt(2))^2≈-1.46035
352: 2024/01/06(土)01:31 ID:MvCtGzfL(1/7) AAS
-((PolyLog[1/2, -(-1)^(1/3)] + PolyLog[1/2, (-1)^(2/3)]))/( (1 - Sqrt[3]))
-((PolyLog[1/2, -(-1)^(1/3)] + PolyLog[1/2, (-1)^(2/3)]))/( (1 - Sqrt[3]))=1/( (1 - Sqrt[3]))*(∑(n=1〜∞)-(e^(n*i*4π/3)+e^(n*i*2π/3))/n^(1/2))=-1.46
-((PolyLog[-1, -(-1)^(1/3)] + PolyLog[-1, (-1)^(2/3)]))/( (1 -1/3^(-1-1)))=1/( (1 -1/3^(-1-1)))*(∑(n=1〜∞)-(e^(n*i*4π/3)+e^(n*i*2π/3))/n^(-1))=-1/12 + 0 i
x^2+x+1=0
x=cos(2pi*n/3)+i*sin(2pi*n/3)
x^4+x^3+x^2+x+1=0
x=cos(2pi*n/5)+i*sin(2pi*n/5)
省2
353: 2024/01/06(土)17:33 ID:MvCtGzfL(2/7) AAS
e^(iπ)+1=0
e^(i*4π/3)+e^(i*2π/3)+1=0
e^(i*6π/4)+e^(i*4π/4)+e^(i*2π/4)+1=0
e^(i*8π/5)+e^(i*6π/5)+e^(i*4π/5)+e^(i*2π/5)+1=0
e^(iπ)=Σ(k=1〜n-1)e^(i*2π*k/n) (1<=k<=n-1)
e^(iπ)=Σ(k=1〜2*3*5-1)e^(i*2π*k/(2*3*5))
354: 2024/01/06(土)20:51 ID:MvCtGzfL(3/7) AAS
1,2,3,4,5,6,
1,5
2,3,4,6
e^(i2π)=e^(i*2π*1/(2*3))+e^(i*2π*5/(2*3))
2,3,4,6
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
1,7,11,13,17,19,23,29
省2
355: 2024/01/06(土)21:01 ID:MvCtGzfL(4/7) AAS
2^2*3*5
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60
0=e^(i*2π*1/(4*3*5))+e^(i*2π*7/(4*3*5))+e^(i*2π*11/(4*3*5))+e^(i*2π*13/(4*3*5))+e^(i*2π*17/(4*3*5))+e^(i*2π*19/(4*3*5))+e^(i*2π*23/(4*3*5))+e^(i*2π*29/(4*3*5)) ←5.33i
+e^(i*2π*31/(4*3*5))+e^(i*2π*37/(4*3*5))+e^(i*2π*41/(4*3*5))+e^(i*2π*43/(4*3*5))+e^(i*2π*47/(4*3*5))+e^(i*2π*49/(4*3*5))+e^(i*2π*53/(4*3*5))+e^(i*2π*59/(4*3*5)) ←-5.33i
(2^2*3*5)未満の2,3,5,を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
省1
356: 2024/01/06(土)21:27 ID:MvCtGzfL(5/7) AAS
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c))
a=3 b=1 c=1のとき 0になる
0=e^(i*2π*1/(8*3*5))+e^(i*2π*7/(8*3*5))+e^(i*2π*11/(8*3*5))+e^(i*2π*13/(8*3*5))+e^(i*2π*17/(8*3*5))+e^(i*2π*19/(8*3*5))+e^(i*2π*23/(8*3*5))+e^(i*2π*29/(8*3*5))
←(5.132689822507279173528306376440040126225812904101791511905651606... +
5.132689822507279173528306376440040126225812904101791511905651606... i)
省9
357: 2024/01/06(土)21:31 ID:MvCtGzfL(6/7) AAS
1<=A<=2^a*3^b*5^c
0=Σe^(i*2pi*(A/(2^a*3^b*5^c)) ←全方位を足すことになるため0に収束する
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) になるため
Σe^(i*2pi*(A/(2^a*3^b*5^c))-Σe^(i*2pi*(X/(2^a*3^b*5^c)=0 ←2,3,5,を素因数に持つ数の分子のみを足しても0になる
358: 2024/01/06(土)22:46 ID:MvCtGzfL(7/7) AAS
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c))
a=1 b=2 c=1のとき 0になる
0=e^(i*2π*1/(2*9*5))+e^(i*2π*7/(2*9*5))+e^(i*2π*11/(2*9*5))+e^(i*2π*13/(2*9*5))+e^(i*2π*17/(2*9*5))+e^(i*2π*19/(2*9*5))+e^(i*2π*23/(2*9*5))+e^(i*2π*29/(2*9*5))
←3.3587707643070619775468762345+5.817561614756781915987196652591 i
+e^(i*2π*31/(2*9*5))+e^(i*2π*37/(2*9*5))+e^(i*2π*41/(2*9*5))+e^(i*2π*43/(2*9*5))+e^(i*2π*47/(2*9*5))+e^(i*2π*49/(2*9*5))+e^(i*2π*53/(2*9*5))+e^(i*2π*59/(2*9*5))
省3
359: 2024/01/07(日)00:36 ID:SsbMX1Ts(1/12) AAS
1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
43個
121, 143, 169, 187, 209 ←11以上の素数の積
43+5=48=(2^1-2^0)*(3^1-3^0)*(5^1-5^0)*(7^1-7^0)
e^(i*2π*1/(210))+e^(i*2π*11/(210))+e^(i*2π*13/(210))+e^(i*2π*17/(210))+e^(i*2π*19/(210))+e^(i*2π*23/(210))+e^(i*2π*29/(210))+e^(i*2π*31/(210))
+e^(i*2π*37/(210))+e^(i*2π*41/(210))+e^(i*2π*43/(210))+e^(i*2π*47/(210))+e^(i*2π*53/(210))+e^(i*2π*59/(210))+e^(i*2π*61/(210))+e^(i*2π*67/(210))
省4
上下前次1-新書関写板覧索設栞歴
あと 342 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.032s