素数の規則を見つけたい。。。 (701レス)
上下前次1-新
166: 2023/07/17(月)12:59 ID:nXy+r9PE(1) AAS
おそらく、色んな人の言ってる素数の規則の有無って有効かつ単純な、P=n(f)の方程式の完成のこと言ってるよな。
単純な等比級数は倍数の世界で
櫛からも分かる通り素数は等比級数やひいては合成数の穴として素数が並べられているから
"等比級数ではなさ"で成り立っている素数の並びをなんとか等比級数にしようと試みてることになる。
整数の世界からみたら、素数の並びは整数の規則のメス型なんだよな。
だから無限から数え下げようとか、ゼータ関数みたいな一次関数よりも複雑な関数が必要になる。
167(1): 2023/07/18(火)02:39 ID:2aiM4OLs(1) AAS
値が正になるときには、すべての素数をしかも素数だけ表す多変数の多項式系というものは
ずいぶん昔から知られているよ。
168: 2023/07/19(水)18:02 ID:lJxdL4Ez(1) AAS
>>167
k+2が素数のときに有効なやつな
規則が無いってのが倍数の規則の単純さの裏にあるとして考えたら
おそらくみんな一次関数的な処理を目指してるんじゃないかと思って
169: 2023/08/27(日)15:28 ID:EQKFmvww(1) AAS
素数の集合は自然数集合Nの部分集合であって、その任意の相異なる要素同士が互いに素である集合の例である。
そのような性質をもつNの部分集合として最大のものだろう。
そこで、「相異なる要素同士が互いに素である」という"関係"を
相異なる要素同士のなんらかの別の"関係"に置き換えることで、
自然数の集合Nの部分集合を(素数の集合の類似品として)作ることは可能か?
170: 2023/09/07(木)00:16 ID:zJAgvXPW(1) AAS
e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+2/5)/11^3))=e^((23 i π)/139755)
e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+2/7)/11^3))=e^((47 i π)/139755)
e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+4/7)/11^3))=e^(-(13 i π)/139755)
floor((1/2+1/3+1/5+1/7)*11^n)+4/7)のときfloor((1/2+1/3+1/5+1/7)*11^n)+4/7)は素因数11をn個以上もたない
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^3)+8/11)/13^3))=e^((19 i π)/230685)
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^3)+11/13)/17^3))=e^(-(1171 i π)/4339335)
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^3)+22/13)/17^3))=e^(-(45317 i π)/73768695)
171: 2023/09/10(日)00:00 ID:dI5uwGku(1/3) AAS
cos(2pi*(1/2+1/3+1/5+1/7+1/11+a/13+b/17))>cos(2pi*(281/510510))を満たすとき
aとbが同時に整数になることがないため
cos(2pi*(1/2+1/3+1/5+1/7+1/11+a/13+b/17)) の分子が素数にならない(19より大きい素数の積になる可能性がある
172: 2023/09/10(日)00:28 ID:dI5uwGku(2/3) AAS
cos(2pi*(1/2+n/(3*5*7*11*13*17))) >cos(2pi*(19^2/510510))
255255m+127447<n<255255m+127808
の範囲内で3,5,7,11,13,17で割れない整数を入れればcos(2pi*(1/2+n/(3*5*7*11*13*17))) の分子は素数
cos(2pi*(1/2+127487/(3*5*7*11*13*17)))=cos(2pi*(-19^2/510510))
cos(2pi*(1/2+127808/(3*5*7*11*13*17)))=cos(2pi*(19^2/510510))
((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)は3,5,7,11,13,17で割れない整数
255255m+127447<((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)<255255m+127808のとき
省1
173: 2023/09/10(日)20:11 ID:dI5uwGku(3/3) AAS
e^(i*2pi*(A/(2*3*5*7*11*13*17*19)-1/2))=e^(i*2pi*(B)/(3*6*7*11*13*17*19))
Aに素数を入れて出てくるBは3,5,7,11,13,17,19を素因数に持たない
e^(i*2pi*(23/(2*3*5*7*11*13*19)-1/2))=e^(-i*2pi*(2424911)/(3*5*7*11*13*17*19))
e^(i*2pi*(1/2+2424911/(3*5*7*11*13*17)))=e^(-i*2pi*(23)/(2*3*5*7*11*13*17))
e^(i*2pi*(19/(2*3*5*7*11*13*17*19)-1/2))=e^(-i*2pi*(127627)/255255)
e^(i*2pi*(1/2+127627/(3*5*7*11*13*17)))=e^(-i*2pi*(1)/(2*3*5*7*11*13*17))
e^(i*2pi*(17/(2*3*5*7*11*13*17*19)-1/2))=e^(-i*2pi*(142642)/285285)
省3
174: 2023/09/11(月)01:16 ID:PGAOsNVR(1) AAS
cos(2pi*(1/2+n/(3*5*7*11*13))) >cos(2pi*(17^2/(2*3*5*7*11*13)))
15015 m + 7363<n<15015 m + 7652
√(A+B)=√(3*5*7*11*13)
A-B=17^2
√(A-B)=17
A=7652 B=7363
√(A+B)*√(A^2-B^2)=3*5*7*11*13*17
省5
175: 2023/09/12(火)15:56 ID:L3Ppsu1Q(1) AAS
素数は法則だから式では表せない
176: 2023/09/16(土)11:52 ID:PJtUNqdO(1/4) AAS
素数を式で出すには定義から見つけないと無理だな虚数みたいに
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31=3770006491/200560490130
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31-1/37=-61070249963/7420738134810
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31-1/37+1/41=4916857886327/304250263527210
4916857886327=1301*3779291227
4916857886327は2から41の素数で割れないものの43以上の素数の積になる可能性がある
cos(2pi*(1/2+n/(3*5*7*11*13*17))) >cos(2pi*(19^2/510510))
省9
177: 2023/09/16(土)21:42 ID:PJtUNqdO(2/4) AAS
255255m+127447<X=((1/3+n/(5*7*11*13*17))*3*5*7*11*13*17)<255255m+127808
255255 m + 127447<3 n + 85085<255255 m + 127808
42362/3<n<14241
cos(2pi*(1/2+X/(3*5*7*11*13*17)))
e^(i*2pi*(1/2+((1/3+n/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) ←nが42362/3<n<14241のとき分子は素数になる
e^(i*2pi*(1/2+((1/3+14130/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(61 i π)/51051)
e^(i*2pi*(1/2+((1/3+14131/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(23 i π)/19635)
省10
178: 2023/09/16(土)22:15 ID:PJtUNqdO(3/4) AAS
e^(i*2pi*(1/2+X1/(3*5)))
cos(2pi*(1/2+((1/2+n/3)*(2*3))/(3*5)))>cos(2π*49/30)を満たすとき分子は素数
1/2 (15 m - 16)<n<5/2 (3 m - 1)
e^(i*2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))
cos(2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))>cos(2π*121/210)を満たすとき分子は素数
nが1/4 (105 m - 118)<n<1/4 (105 m - 29)をみたしかつ3または7の倍数でないとき分子が素数
e^(i*2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))
省14
179: 2023/09/16(土)23:51 ID:PJtUNqdO(4/4) AAS
e^(i*2pi*(1/2+(1/2+((1/2+(1/2+n/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11)))
1/8 (1155 m - 809)<n<5/8 (231 m - 128)を満たしかつ3の倍数でないとき分子が素数(非素数が混じる
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-82/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((137 i π)/1155)
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-83/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((121 i π)/1155) ←非素数
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-85/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((89 i π)/1155)
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-86/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((73 i π)/1155)
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-88/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((41 i π)/1155)
省9
180: 2023/09/17(日)00:19 ID:NvL18fxN(1/3) AAS
e^(2 i π (2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))
cos(2 π (2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)) < cos(2π*17^2/(2*3*5*7*11*13))
1/16 (15015 m - 9101)<n<1/16 (15015 m - 8812)
e^(2 i π (2/13(2/11 (2/7 (2/5 (-551/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((281 i π)/15015)
e^(2 i π (2/13(2/11 (2/7 (2/5 (-553/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((217 i π)/15015) ←非素数
e^(2 i π (2/13(2/11 (2/7 (2/5 (-554/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((185 i π)/15015) ←非素数
e^(2 i π (2/13(2/11 (2/7 (2/5 (-556/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((121 i π)/15015) ←非素数
省8
181: 2023/09/17(日)00:45 ID:NvL18fxN(2/3) AAS
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))
cos(2 π (2/17(2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2)) >cos(2π*19^2/(210*11*13*17))
1/32 (255255 m - 145721)<n<5/32 (51051 m - 29072)
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3433/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((283 i π)/255255)
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (-4546/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((137 i π)/255255)
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3430/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((91 i π)/255255)
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (-4547/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((73 i π)/255255)
省3
182: 2023/09/17(日)00:49 ID:NvL18fxN(3/3) AAS
連続する素数の差分は2^nと2^(n-1)が交互に来る
73 +2^4=89
89+2^3=97
97+2^4=113
183: 2023/09/25(月)18:20 ID:nXDkmK9h(1) AAS
~~~-y( -)^^) ブチュッ
184: 2023/10/13(金)01:05 ID:mFgz5jJo(1) AAS
e^(i*2pi*(1-((1-n/(2*3))*2*3 mod 6)/(2*3*5)))
e^(i*2pi*(1-(1-((1-n/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))
e^(i*2pi*(1-(1-((1-5/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*7/105)
e^(i*2pi*(1-(1-((1-7/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*5/105)
e^(i*2pi*(1-(1-((1-11/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*7/105)
e^(i*2pi*(1-(1-((1-13/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*5/105)
e^(i*2pi*(1-(1-((1-17/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))=e^((i π)*7/105)
省4
185: 2023/10/22(日)11:17 ID:1rLOY4nu(1/11) AAS
cos(2pi*(1-(1-(1-n/(2*3))*2*3)/(2*3)^5)) > cos(2pi*(25/(2*3)^5))
n = 7776 m, m element Z
n = 27 (288 m + 1), m element Z
n = 24 (324 m + 1), m element Z
n = 18 (432 m + 1), m element Z
n = 18 (432 m + 431), m element Z
e^(i*2pi*(1-(1-(1-27/(2*3))*2*3)/(2*3)^5))=e^(-(11 i π)/1944)
省3
186: 2023/10/22(日)11:32 ID:1rLOY4nu(2/11) AAS
cos(2pi*(1-((n+1/(2*3))*2*3)/(2*3)^3)) > cos(2pi*(25/(2*3)^3))
n = 36 m, m element Z
n = 4 (9 m + 8), m element Z
n = 3 (12 m + 1), m element Z
n = 3 (12 m + 11), m element Z
n = 2 (18 m + 1), m element Z
e^(i*2pi*(1-((32+1/(2*3))*2*3)/(2*3)^3)) =e^((23 i π)/108)
省3
187: 2023/10/22(日)11:32 ID:1rLOY4nu(3/11) AAS
cos(2pi*(1-((n+1/(2*3))*2*3)/(2*3)^3)) > cos(2pi*(25/(2*3)^3))
n = 36 m, m element Z
n = 4 (9 m + 8), m element Z
n = 3 (12 m + 1), m element Z
n = 3 (12 m + 11), m element Z
n = 2 (18 m + 1), m element Z
e^(i*2pi*(1-((32+1/(2*3))*2*3)/(2*3)^3)) =e^((23 i π)/108)
省3
188: 2023/10/22(日)11:35 ID:1rLOY4nu(4/11) AAS
cos(2pi*(1-((n+1/(2*3*5))*2*3*5)/(2*3*5)^3)) > cos(2pi*(49/(2*3*5)^3))
n = 900 m, m element Z
n = 900 m + 1, m element Z
n = 900 m + 899, m element Z
e^(i*2pi*(1-((1+1/(2*3*5))*2*3*5)/(2*3*5)^3)) =e^(-(31 i π)/13500)
e^(i*2pi*(1-((899+1/(2*3*5))*2*3*5)/(2*3*5)^3)) =e^((29 i π)/13500)
189: 2023/10/22(日)11:39 ID:1rLOY4nu(5/11) AAS
cos(2pi*(1-((n/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6)) > cos(2pi*(121/(2*3*5*7)^6))
n = 2858870700000 m, m element Z
n = 4 (714717675000 m + 714717674999), m element Z
n = 3 (952956900000 m + 1), m element Z
n = 3 (952956900000 m + 1), m element Z
n = 2 (1429435350000 m + 1), m element Z
e^(i*2pi*(1-((4*714717674999/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^((113 i π)/42883060500000)
190: 2023/10/22(日)11:45 ID:1rLOY4nu(6/11) AAS
e^(i*2pi*(1-((3/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^(-(97 i π)/42883060500000)
e^(i*2pi*(1-((2/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^(-(67 i π)/42883060500000)
cos(2pi*(1-((n/(11*3)+1/(2*5*7))*2*3*5*7*11)/(2*3*5*7*11)^6)) > cos(2pi*(169/(2*3*5*7*11)^6))
n = 2170570215498300000 m, m element Z
n = 2 (1085285107749150000 m + 1085285107749149999), m element Z
n = 2170570215498300000 m + 1, m element Z
n = 2170570215498300000 m + 2170570215498299999, m element Z
省3
191: 2023/10/22(日)11:53 ID:1rLOY4nu(7/11) AAS
cos(2pi*(1-((n/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) > cos(2pi*(289/(2*3*5*7*11*13)^7))
n = 104874047791504330586247000000 m, m element Z
n = 2 (52437023895752165293123500000 m + 52437023895752165293123499999), m element Z
n = 104874047791504330586247000000 m + 104874047791504330586246999999, m element Z
e^(i*2pi*(1-((52437023895752165293123499999/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) =e^((277 i π)/11011775018107954711555935000000)
e^(i*2pi*(1-((104874047791504330586246999999/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) =e^((67 i π)/11011775018107954711555935000000)
192: 2023/10/22(日)11:58 ID:1rLOY4nu(8/11) AAS
cos(2pi*(1-((n/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) > cos(2pi*(289/(2*3*5*7*11*13)^7))
n = 98 (1070143344811268679451500000 m + 1070143344811268679451499999), m element Z
n = 104874047791504330586247000000 m + 104874047791504330586246999903, m element Z
e^(i*2pi*(1-((98*1070143344811268679451499999/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) =e^((131 i π)/11011775018107954711555935000000)
e^(i*2pi*(1-((104874047791504330586246999903/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) =e^(-(79 i π)/11011775018107954711555935000000)
193: 2023/10/22(日)14:24 ID:1rLOY4nu(9/11) AAS
cos(2pi*(1-((n/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) > cos(2pi*(23^2/(2*3*5*7*11*13*17*19)^7))
n = 399 (96407937365467087673718025140163334691000000 m + 28140716575350032665769627724873739650774217), m element Z
n = 8 (4808345876102670997726686503865646317713625000 m + 1403518239195582879205260182778077765082364073), m element Z
n = 5 (7693353401764273596362698406185034108341800000 m + 2245629182712932606728416292444924424131782517), m element Z
n = 2 (19233383504410683990906746015462585270854500000 m + 5614072956782331516821040731112311060329456291), m element Z
n = 38466767008821367981813492030925170541709000000 m + 11228145913564663033642081462224622120658912581, m element Z
e^(i*2pi*(1-((8*1403518239195582879205260182778077765082364073/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) =e^(-(229 i π)/4039010535926243638090416663247142906879445000000)
省3
194: 2023/10/22(日)14:35 ID:1rLOY4nu(10/11) AAS
cos(2pi*(1-((n/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) > cos(2pi*(29^2/(2*3*5*7*11*13*17*19*23)^7))
n = 864 (151588688860480401830821308882900152330122196839031250 m + 57736288309081718076562795675036302431140590123061457), m element Z
n = 350 (374207506215585906233798888213787804609215937339780000 m + 142526151711561726909000729894946758001444199618071711), m element Z
n = 69 (1898154017035580683794632041664141037872834464767000000 m + 722958740565892817654351528452628482616021302410508679), m element Z
n = 15 (8731508478363671145455307391655048774215038537928200000 m + 3325610206603106961210017030882091020033697991088339923), m element Z
n = 4 (32743156793863766795457402718706432903306394517230750000 m + 12471038274761651104537563865807841325126367466581274711), m element Z
e^(i*2pi*(1-((864*57736288309081718076562795675036302431140590123061457/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^(-(83 i π)/13752125853422782054092109141856701819388685697236915000000)
省3
195: 2023/10/22(日)14:35 ID:1rLOY4nu(11/11) AAS
e^(i*2pi*(1-((4*12471038274761651104537563865807841325126367466581274711/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^((757 i π)/13752125853422782054092109141856701819388685697236915000000)
P(k)がk番目の素数の時
cos(2pi*(1-((n/(11からP(k)の積)^11+1/(2*5*7*3))*2*3*5*7*(11からP(k)の積)^11)/(2からP(k)の積)^7)) > cos(2pi*(P(k+1)^2/(2からP(k)の積)^7))
をみたす整数nがあるとき
e^(i*2pi*(1-((n/(11からP(k)の積)^11+1/(2*5*7*3))*2*3*5*7*(11からP(k)の積)^11)/(2からP(k)の積)^7)) の指数の分子はP(k+1)^2未満の素数
196: 2023/10/29(日)11:38 ID:MYhVftt0(1) AAS
私からの挑戦状
君は、無事、素数の謎が解けるか
暗号
ノート
素数
0Σ
金とドイツ音楽家
省1
197: 2023/10/30(月)08:46 ID:uOew3Zmo(1/2) AAS
解けた人そこそこいるみたいですね
解けない人の為にヒント
ノートは『場所』を示します
198: 2023/10/30(月)12:36 ID:uOew3Zmo(2/2) AAS
解けた人がラストヒント出してるようですね
暗号の追加で
270
199: 2023/11/18(土)02:12 ID:ukn8BQQE(1) AAS
cos(2pi*(1-(((2n+1)/2^x-1/(3*5*7))*105*2^x)/(2*3*5*7)^3)) > cos(2pi*(11^2/210^3))
n = 44100 m
n = 44100 m + 44099
e^(i*2pi*(1-(((2*44100+1)/2^3-1/(3*5*7))*210*2^2)/(2*3*5*7)^3))=e^(-(97 i π)/4630500)
e^(i*2pi*(1-(((2*44100+1)/2^4-1/(3*5*7))*105*2^4)/(2*3*5*7)^3))=e^(-(89 i π)/4630500)
e^(i*2pi*(1-(((2*44100+1)/2^5-1/(3*5*7))*105*2^5)/(2*3*5*7)^3))=e^(-(73 i π)/4630500)
e^(i*2pi*(1-(((2*44100+1)/2^6-1/(3*5*7))*105*2^6)/(2*3*5*7)^3))=e^(-(41 i π)/4630500)
省4
200: 2023/11/26(日)00:24 ID:5ylX1SN5(1/3) AAS
x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4=√((x+y)^2+z^2)^2*√((x-y)^2+z^2)^2*e^(i*arcsin(z/(x+y)))*e^(i*arcsin(-z/(x+y)))*e^(i*arcsin(+z/(x-y)))*e^(i*arcsin(-z/(x-y)))
x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4=((x+y+i^(2n+1)*z)*(x+y-i^(2n+1)*z)*(x-y+i^(2n+1)*z)*(x-y-i^(2n+1)*z))
x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4=((x+y+z)*(x+y-z)*(x-y+z)*(x-y-z))*e^(i*arcsin(iz/(x+y)))*e^(i*arcsin(-iz/(x+y)))*e^(i*arcsin(+iz/(x-y)))*e^(i*arcsin(-iz/(x-y)))
x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4=((x+y+i^2n*z)*(x+y-i^2n*z)*(x-y+i^2n*z)*(x-y-i^2n*z))
x^12 - 2 x^6 y^6 - 2 x^6 z^6 + y^12 - 2 y^6 z^6 + z^12=((x^3+y^3+i^2*z^3)*(x^3+y^3-i^2*z^3)*(x^3-y^3+i^2*z^3)*(x^3-y^3-i^2*z^3))=0
x^12 - 2 x^6 y^6 - 2 x^6 z^6 + y^12 - 2 y^6 z^6 + z^12≠0
cos(2pi*((2*a+1)/2^3-(3*b+1)/3^3-c/5^3-d/7^3)) > cos(2pi*(11^2/210^3))
省5
201: 2023/11/26(日)00:35 ID:5ylX1SN5(2/3) AAS
↓3次元では書けないベクトル和(((x+y+i^m*z)*(x+y-i^m*z)*(x-y+i^m*z)*(x-y-i^m*z)) mが3以上のベクトル和をかけない)
√(x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4)=√(((x+y+i^(2n+1)*z)*(x+y-i^(2n+1)*z)*(x-y+i^(2n+1)*z)*(x-y-i^(2n+1)*z)))
√(x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4)=√(((x+y+i^2n*z)*(x+y-i^2n*z)*(x-y+i^2n*z)*(x-y-i^2n*z)))
cos(2pi*((2*a+1)/2^3-(3*b+1)/3^3-c/5^3-d/7^3+e/11^3)) > cos(2pi*(13^2/2310^3))
a = 4 n_1, b = 9 n_2, c = 125 n_3, d = 343 n_4 + 83, e = 1331 n_5 + 205,
a = 4 n_1, b = 9 n_2, c = 125 n_3 + 53, d = 7 (49 n_4 + 29), e = 1331 n_5 + 1235, cos(2pi*((2*4+1)/2^3-(3*9+1)/3^3-53/5^3-7*29/7^3+1235/11^3))=cos((91 π)/6163195500) ←7*29が7をもつため非素数
a = 4 n_1, b = 3 (3 n_2 + 1), c = 125 n_3 + 77, d = 343 n_4 + 163, e = 1331 n_5 + 448, cos(2pi*((2*4+1)/2^3-(3*3+1)/3^3-77/5^3-163/7^3+448/11^3))=cos((19 π)/6163195500)
省2
202: 2023/11/26(日)00:48 ID:5ylX1SN5(3/3) AAS
cos(2pi*((2*a+1)/2^3-(3*b+2)/3^3-c/5^3-d/7^3+e/11^3+f/13)) > cos(2pi*(17^2/(2310)^3*1/13))
a = 4 n_1, b = 9 n_2, c = 5 (25 n_3 + 11), d = 343 n_4 + 114, e = 1331 n_5 + 1165, f = 13 n_6 + 11,
a = 4 n_1, b = 9 n_2, c = 125 n_3 + 11, d = 343 n_4 + 176, e = 1331 n_5 + 118, f = 13 n_6 + 6, cos(2pi*((2*4+1)/2^3-(3*9+2)/3^3-11/5^3-176/7^3+118/11^3+6/13)) =cos((71 π)/80121541500)
a = 4 n_1, b = 9 n_2, c = 125 n_3 + 92, d = 7 (49 n_4 + 34), e = 1331 n_5 + 402, f = 13 n_6 + 1,
a = 4 n_1, b = 3 (3 n_2 + 1), c = 5 (25 n_3 + 13), d = 343 n_4 + 103, e = 1331 n_5 + 751, f = 13 n_6 + 7,
a = 4 n_1, b = 3 (3 n_2 + 1), c = 125 n_3 + 28, d = 7 (49 n_4 + 46), e = 1331 n_5 + 183, f = 13 n_6 + 4,
203: 2023/12/03(日)00:59 ID:ytu0Oj+u(1/9) AAS
cos(2pi*((n1/2+1)/2^n+(n2/3+1)/3^n+(n3/5+1)/5^n+(n4/7+1)/7^n)) > cos(2pi*(11^2/(2*3*5*7)^n))
これを満たす整数n,n1,n2,n3,n4が存在するとき
e^(i*2pi*((n1/2+1)/2^n+(n2/3+1)/3^n+(n3/5+1)/5^n+(n4/7+1)/7^n))=e^(i*2pi*(X/(2*3*5*7)^n))
のXが素数になる
204: 2023/12/03(日)01:11 ID:ytu0Oj+u(2/9) AAS
cos(2pi*((n1/2+1)/2^n+(n2/3+1)/3^n+(n3/5+1)/5^n+(n4/7+1)/7^n)) > cos(2pi*(11^2/(2*3*5*7)^(n+1)))
これを満たす整数n,n1,n2,n3,n4が存在するとき
e^(i*2pi*((n1/2+1)/2^n+(n2/3+1)/3^n+(n3/5+1)/5^n+(n4/7+1)/7^n))=e^(i*2pi*(X/(2*3*5*7)^(n+1)))
のXが素数になる
cos(2pi*((1/2+1)/2^2+(2/3+1)/3^2+(a/5+1)/5^2+(b/7+1)/7^2)) > cos(2pi*(11^2/(2*3*5*7)^3))
a = 125 n_1 + 19, b = 343 n_2 + 78, n_1 element Z, n_2 element Z
e^(i*2pi*((1/2+1)/2^2+(2/3+1)/3^2+(19/5+1)/5^2+(78/7+1)/7^2))=e^(-(13 i π)/4630500)
205: 2023/12/03(日)01:14 ID:ytu0Oj+u(3/9) AAS
cos(2pi*((1/2+1)/2^2+(2/3+1)/3^2+(a/5+1)/5^2+(b/7+1)/7^2+(c/11+1)/11^2)) > cos(2pi*(13^2/(2*3*5*7*11)^3))
a = 125 n_1 + 29, b = 343 n_2 + 82, c = 1331 n_3 + 1198, n_1 element Z, n_2 element Z, n_3 element Z
e^(i*2pi*((1/2+1)/2^2+(2/3+1)/3^2+(29/5+1)/5^2+(82/7+1)/7^2+(1198/11+1)/11^2))=e^(-(23 i π)/6163195500)
206: 2023/12/03(日)01:48 ID:ytu0Oj+u(4/9) AAS
cos(2pi*((7/2+1)/2^3+(29/3+1)/3^3+(a/5+1)/5^3+(b/7+1)/7^3)) > cos(2pi*(11^2/(2*3*5*7)^4))
a = 625 n_1 + 204, b = 2401 n_2 + 1693, n_1 element Z, n_2 element Z
e^(i*2pi*((7/2+1)/2^3+(29/3+1)/3^3+(204/5+1)/5^3+(1693/7+1)/7^3)) =e^((89 i π)/972405000)
207: 2023/12/03(日)01:50 ID:ytu0Oj+u(5/9) AAS
cos(2pi*((5/2+1)/2^3+(29/3+1)/3^3+(a/5+1)/5^3+(b/7+1)/7^3)) > cos(2pi*(11^2/(2*3*5*7)^4))
a = 625 n_1 + 582, b = 2401 n_2 + 541, n_1 element Z, n_2 element Z
e^(i*2pi*((5/2+1)/2^3+(29/3+1)/3^3+(582/5+1)/5^3+(541/7+1)/7^3)) =e^(-(73 i π)/972405000)
208: 2023/12/03(日)13:26 ID:ytu0Oj+u(6/9) AAS
|L|=X+Y+Z=√((√x+√y+i*√z)*(√x-√y+i*√z)*(√x+√y-i*√z)*(√x-√y-i*√z))
|L|=X+Y+Z=√((√x+√y+i*√z)*(√x-√y+i*√z)*(√x+√y-i*√z)*(√x-√y-i*√z))
|L|=√(x^2+y^2+z^2+2*(x*y*cos(0)+x*z*cos(0)+y*z*cos(π)))
|L|=0
√x=√y+i*√z、-√y+i*√z、√y-i*√z、-√y-i*√z
|L|=X+Y+Z=√((√x+√y+i^2*√z)*(√x-√y+i^2*√z)*(√x+√y-i^2*√z)*(√x-√y-i^2*√z))
|L|=√(x^2+y^2+z^2+2*(x*y*cos(π)+x*z*cos(π)+y*z*cos(π)))
省6
209: 2023/12/03(日)16:41 ID:ytu0Oj+u(7/9) AAS
a^n+b^n≠c^n
1/a^n+1/b^n≠c^n/(ab)^n
cos(2pi*(1/a^n+1/b^n)) > cos(2pi*(c^n/(ab)^n))
cos(2pi*(1/2^3+1/(3*5)^3)) > cos(2pi*(c^3/(2*3*5)^3))
(-0.5 + 0.866025 i) (27000 n + 3383)^(1/3)<c<(-0.5 + 0.866025 i) (27000 n + 23617)^(1/3), n element Z
cos(2pi*(1/(2*7)^4+1/(3*5)^4)) > cos(2pi*(c^3/(2*3*5*7)^4))
(-0.5 + 0.866025 i) (1944810000 n + 89041)^(1/3)<c<(-0.5 + 0.866025 i) (1944810000 n + 1944720959)^(1/3), n element Z
210: 2023/12/03(日)19:40 ID:ytu0Oj+u(8/9) AAS
cos(2pi*(1/2^3+1/(3*5)^3)) =cos(2pi*(c^3/(2*3*5)^3))
c = 27000 n + 1127, n element Z
c = 27000 n + 7873, n element Z
c = 27000 n + 10127, n element Z
c = 27000 n + 19127, n element Z
c = 27000 n + 25873, n element Z
1127^3 mod 27000 =3383 =2^3+15^3
省4
211: 2023/12/03(日)19:56 ID:ytu0Oj+u(9/9) AAS
cos(2pi*(1/2^4+1/(3*5*7)^4)) =cos(2pi*(c^4/(2*3*5*7)^4))
c = 1944810000 n + 5250989, n element Z
c = 1944810000 n + 11474377, n element Z
c = 1944810000 n + 19508123, n element Z
c = 1944810000 n + 36233489, n element Z
c = 1944810000 n + 90568123, n element Z
c = 1944810000 n + 104825261, n element Z
省15
212: 2023/12/10(日)22:50 ID:ASmhxKZP(1) AAS
素数aがある
1≦X≦a^nの範囲でaを素因数に持つものと持たないものに分ける
aを素因数に持つ個数=(a^(n-1))
aを素因数に持たない個数=(a^n-a^(n-1))=(1-1/a)*(1+1/1!*(n*ln(n))+1/2!*(n*ln(n))^2+1/3!*(n*ln(n))^3+・・・)=(1-1/a)*Σ(n*ln(a))^k/k!=(1-1/a)*e^(n*ln(a))
a^n以下でaを素因数を持たない個数を小さいほうの素数から順番にかける
Π(1-1/a)*e^(n*ln(a))=(1-1/2)*e^(n*ln(2))*(1-1/3)*e^(n*ln(3))*(1-1/5)*e^(n*ln(5))*・・・*(1-1/m)*e^(n*ln(m))=(1-1/2)*(1-1/3)*・・・(1-1/m)*e^(n*(ln(2)+ln(3)+ln(5)+・・・+ln(m)))
Π(1-1/a)*e^(n*ln(a))=1/ζ(1)*e^(n*(ln(2)+ln(3)+ln(5)+・・・+ln(m)))
省4
213: 2023/12/11(月)18:40 ID:DDn3hfvp(1/2) AAS
((a^(n-1))+(a^n-a^(n-1)))*((b^(n-1))+(b^n-b^(n-1)))
aとbを素因数にもつ個数=(a^(n-1))*(b^(n-1))
bのみを素因数にもつ個数=(a^n-a^(n-1))*(b^(n-1))
aのみを素因数にもつ個数=(b^n-b^(n-1))*(a^(n-1))
aとbを素因数にもたない個数=(a^n-a^(n-1))*(b^n-b^(n-1))
(2*3)^2
aとbを素因数にもつ個数=6,12,18,24,30,36
省3
214: 2023/12/11(月)19:11 ID:DDn3hfvp(2/2) AAS
cos(2pi*(7^2/(2*3*5)^2))>cos(2pi*((2*a+1)/2^2+(3*b+1)/3^2+(5*c+1)/5^2)) > cos(2pi*(7*11/(2*3*5)^2))
a = 2 n_1, b = 3 n_2 + 1, c = 5 n_3 + 1, n_1 element Z, n_2 element Z, n_3 element Z
a = 2 n_1, b = 3 n_2 + 2, c = 5 n_3, n_1 element Z, n_2 element Z, n_3 element Z
e^(i*2pi*((2*2+1)/2^2+(3*1+1)/3^2+(5*1+1)/5^2))=e^(i*2pi*(-59 )/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数
e^(i*2pi*((2*2+1)/2^2+(3*2+1)/3^2+(5*5+1)/5^2))=e^(i*2pi*(61)/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数
215: 2023/12/12(火)21:36 ID:mrhhK5hW(1/3) AAS
cos(2pi*(11^2/(2*3*5*7)^2))>cos(2pi*((2*a+1)/2^2+(3*b+1)/3^2+(5*c+1)/5^2+(d)/7^2)) > cos(2pi*(13*11/(2*3*5*7)^2))
a = 2 n_1, b = 3 n_2, c = 5 n_3 + 4, d = 49 n_4 + 39, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1 + 1, b = 3 n_2, c = 5 n_3, d = 49 n_4 + 5, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
cos(2pi*((2*2+1)/2^2+(3*3+1)/3^2+(5*4+1)/5^2+(39)/7^2)) =cos((131 π)/22050)
cos(2pi*((2*1+1)/2^2+(3*3+1)/3^2+(5*5+1)/5^2+(5)/7^2)) =cos((139 π)/22050)
216: 2023/12/12(火)22:56 ID:mrhhK5hW(2/3) AAS
cos(2pi*(11^2/(2*3*5*7)^2))>cos(2pi*((2*a+1)/2^2+(3*b+2)/3^2+(5*c+4)/5^2+(d)/7^2)) > cos(2pi*(13*11/(2*3*5*7)^2))
a = 2 n_1, b = 3 n_2 + 2, c = 5 n_3 + 4, d = 49 n_4 + 44, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1 + 1, b = 3 n_2 + 2, c = 5 n_3, d = 49 n_4 + 10, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
e^(i*2pi*((2*2+1)/2^2+(3*2+1)/3^2+(5*4+1)/5^2+(44)/7^2)) =e^(-(10331 i π)/22050)
e^(i*2pi*((2*1+1)/2^2+(3*2+1)/3^2+(5*5+1)/5^2+(10)/7^2)) =e^(-(10061 i π)/22050)
217: 2023/12/12(火)23:54 ID:mrhhK5hW(3/3) AAS
e^(i*2pi*((2*2^n+1)/2^2+(3*2^n+2)/3^2+(5*2^n+4)/5^2+(7*2^n+8)/7^2))
e^(i*2pi*((2*2^1+1)/2^2+(3*2^1+2)/3^2+(5*2^1+4)/5^2+(7*2^1+8)/7^2))=e^(-(1249 i π)/22050)
e^(i*2pi*((2*2+1)/2^2+(3*2+2)/3^2+(5*2+4)/5^2+(7*2+8)/7^2))=e^((6521 i π)/22050)
e^(i*2pi*((2*4+1)/2^2+(3*4+2)/3^2+(5*4+4)/5^2+(7*4+8)/7^2))=e^(-(22039 i π)/22050)
e^(i*2pi*((2*8+1)/2^2+(3*8+2)/3^2+(5*8+4)/5^2+(7*8+8)/7^2))=e^((9041 i π)/22050)
218: 2023/12/13(水)00:01 ID:8cxE3ENL(1/3) AAS
e^(i*2pi*((2*3+1)/2^2+(3*3+2)/3^2+(5*3+4)/5^2+(7*3+8)/7^2+(11*3+16)/11^2))=e^(-(1445989 i π)/2668050)
e^(i*2pi*((2*9+1)/2^2+(3*9+2)/3^2+(5*9+4)/5^2+(7*9+8)/7^2+(11*9+16)/11^2))=e^((1769531 i π)/2668050)
e^(i*2pi*((2*27+1)/2^2+(3*27+2)/3^2+(5*27+4)/5^2+(7*27+8)/7^2+(11*27+16)/11^2))=e^((743891 i π)/2668050)
219: 2023/12/13(水)19:15 ID:8cxE3ENL(2/3) AAS
((a^(n-1))+(a^n-a^(n-1)))*((b^(n-1))+(b^n-b^(n-1)))*((c^(n-1))+(c^n-c^(n-1)))
aとbとcを素因数にもつ個数=(a^(n-1))*(b^(n-1))*(c^(n-1))
aとbとcを素因数にもたない個数=(a^n-a^(n-1))*(b^n-b^(n-1))*(c^n-c^(n-1))
1から(1からn番目の素数の積)^nの間の素数の個数=Π(P(k)^n-P(k)^(n-1)) - (n+1番目以上の素数の積の個数)
220: 2023/12/13(水)19:18 ID:8cxE3ENL(3/3) AAS
1から(1からn番目の素数の積)^nの間の素数の個数=Π(P(k)^n-P(k)^(n-1)) - (n+1番目以上の素数の積の個数)+(n-1)
(n+1番目以上の素数の積の個数)=P(n+1)^2、P(n+1)*P(n+2)、P(n+2)^2、P(n+1)*P(n+3)、・・・
221: 2023/12/17(日)01:50 ID:4J99V8IV(1/4) AAS
1から(1からn番目の素数の積)^(n+1)の間の素数の個数=Π(P(k)^(n+1)-P(k)^(n)) - (n+1番目以上の素数の積の個数)+(n-1)
1から(1からn番目の素数の積)^nの間の素数の個数=Π(P(k)^n-P(k)^(n-1)) - (n+1番目以上の素数の積の個数)+(n-1)
18*4 6*2
(1からn番目の素数の積)^nから(1からn番目の素数の積)^(n+1)の間の素数の個数=Π(P(k)^n-P(k)^(n-1))*(ΠP(k)-1) - (n+1番目以上の素数の積の個数)[(1からn番目の素数の積)^nから(1からn番目の素数の積)^(n+1)の間]+1
(2*3)^2から(2*3)^3の間の素数の個数=(2^2-2^1)*(3^2-3^1)*(3*2-1)-(n+1番目以上の素数の積の個数)[(1からn番目の素数の積)^nから(1からn番目の素数の積)^(n+1)の間]
(2*3)^2から(2*3)^3の間の素数の個数=60-(n+1番目以上の素数の積の個数)[(1からn番目の素数の積)^nから(1からn番目の素数の積)^(n+1)の間]=36個
合成数(5以上の素数の積)24個=49,55,65,77,85,91,95,115,119,121,125,133,143,145,155,161,169,175,185,187,203,205,209,215
省3
222: 2023/12/17(日)02:04 ID:4J99V8IV(2/4) AAS
1から(2*3*5)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)- (7以上の素数の積の個数)+(3-1)=240個-(7以上の素数の合成数の個数(1から900の間))+2=154個
素数(154個)=2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97,
101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
省12
223: 2023/12/17(日)02:21 ID:4J99V8IV(3/4) AAS
1から(2*3*5*7)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)*(7^2-7)- (11以上の素数の積の個数)+(4-1)
1から(2*3*5)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)- (7以上の素数の積の個数)+(3-1)
(2*3*5)^2から(2*3*5*7)^2の間の素数の個数=(2^2-2)*(3^2-3)*(5^2-5)*((7^2-7)-1)- (11以上の素数でできた合成数の個数[1から(2*3*5*7)^2の間])+(7以上の素数でできた合成数の個数[1から(2*3*5)^2の間])+1
224: 2023/12/17(日)12:15 ID:4J99V8IV(4/4) AAS
1から(11*13*17*19)^2の間の合成数(素因数11,13,17,19のみ)の個数=11^(n-1)*13^(n-1)*17^(n-1)*19^(n-1)
1から(2*3)^3の間の合成数(素因数11,13,17,19のみ)の個数=121,143,169,187,209,=5個
225: 2023/12/18(月)20:19 ID:G1nocuy9(1/2) AAS
cos(2pi*(7^2/(2*3*5)^2))>cos(2pi*((2*a+1)/2^2+(3*b+1)/3^2+(5*c+1)/5^2)) > cos(2pi*(7*11/(2*3*5)^2))
a = 2 n_1, b = 3 n_2 + 1, c = 5 n_3 + 1, n_1 element Z, n_2 element Z, n_3 element Z
a = 2 n_1, b = 3 n_2 + 2, c = 5 n_3, n_1 element Z, n_2 element Z, n_3 element Z
e^(i*2pi*((2*2+1)/2^2+(3*1+1)/3^2+(5*1+1)/5^2))=e^(i*2pi*(-59 )/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数
e^(i*2pi*((2*2+1)/2^2+(3*2+1)/3^2+(5*5+1)/5^2))=e^(i*2pi*(61)/(2*3*5)^2) ←2,3,5で割れなくて7^2より大きく7*11より小さい数のため素数
1>cos(2pi*(-59+30n)/(2*3*5)^2)>cos(2pi*(7^2/(2*3*5)^2))を満たすとき|-59+30n|=19,29,31は素数
1>cos(2pi*(61+30n)/(2*3*5)^2)>cos(2pi*(7^2/(2*3*5)^2))を満たすとき|61+30n|=31,29は素数
226: 2023/12/18(月)20:28 ID:G1nocuy9(2/2) AAS
cos(2pi*(11^2/(2*3*5*7)^2))>cos(2pi*((2*a+1)/2^2+(3*b+2)/3^2+(c)/5^2+(d)/7^2)) > cos(2pi*(11*13/(2*3*5*7)^2))
a = 2 n_1, b = 3 n_2, c = 25 n_3, d = 49 n_4 + 26, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1, b = 3 n_2, c = 25 n_3 + 7, d = 49 n_4 + 12, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1, b = 3 n_2 + 1, c = 25 n_3 + 8, d = 49 n_4 + 43, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1, b = 3 n_2 + 2, c = 25 n_3 + 24, d = 49 n_4 + 44, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1 + 1, b = 3 n_2 + 1, c = 25 n_3 + 3, d = 7 (7 n_4 + 4), n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
e^(i*2pi*((2*2+1)/2^2+(3*3+2)/3^2+(7)/5^2+(12)/7^2))=e^(-(127 i π)/22050)
省3
227: 2023/12/19(火)02:49 ID:4b3AtVzj(1) AAS
P(k)=k番目の素数
1≦k≦m
cの素数の個数=Π(P(k)^n-P(k)^(n-1))- (P(m+1)以上の素数の合成数の個数)+(m-1)
1から(ΠP(k))^nの間の素数の個数=X個
1から(ΠP(k))^nの間の最大の素数=P(X)
X=Π(P(k)^n-P(k)^(n-1))- (P(m+1)以上P(X)以下の素数の合成数の個数)+(m-1)
(P(m+1)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間])=(Π(P(k)^n-P(k)^(n-1))-X+(m-1))個
228: 2023/12/21(木)00:15 ID:KHL6UQJ4(1/9) AAS
F(X:m)=1から(ΠP(k))^nの間の素数の個数[1≦k≦m]
(P(m+2)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間(1≦k≦m+1のとき)])+F(X:m+1)+m=(Π(P(k)^n-P(k)^(n-1)) 1≦k≦m+1のとき
(P(m+1)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間(1≦k≦mのとき)])+F(X:m)-(m-1)=(Π(P(k)^n-P(k)^(n-1)) 1≦k≦mのとき
((P(m+2)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間(1≦k≦m+1のとき)])+F(X:m+1)+m)/
((P(m+1)以上P(X)以下の素数の合成数の個数[1から(ΠP(k))^nの間(1≦k≦mのとき)])+F(X:m)-(m-1))=(P(m+1)^n-P(m+1)^(n-1))
(P(A)^2-P(A)^(1))+(P(B)^2-P(B)^(1))=(P(C)^2-P(C)^(1))
(4^2-4)+(3^2-3)=(5^2-7)=18
省33
229: 2023/12/21(木)00:27 ID:KHL6UQJ4(2/9) AAS
ピタゴラス数の小さい2個の数の和は順番に並べるとき
最初のほうに出てきた数が後に出てくる数の素因数になる
8245 6396 5203 10897=17*641 ←13 12 5 12+5=17で17が出ているため素因数にもつ
230: 2023/12/21(木)00:29 ID:KHL6UQJ4(3/9) AAS
9953^2=9928^2+705^2
9953 9928 705 10663=7^3*31 ←5 4 3 4+3=7 25^2=24^2+7^2 25 24+7=31で素因数7と31がでているため素因数にもつ
231: 2023/12/21(木)22:26 ID:KHL6UQJ4(4/9) AAS
(a,b,c)=(m^2-n^2、2*mn、m^2+n^2)
(m"^2-n"^2)+2*(m"n")=((m'^2-n'^2)+2*(m'n'))^k*((m^2-n^2)+2*(mn))^l ←左のようになる組み合わせがある
a b c m n
1番目 3 4 5 2 1
2番目 5 12 13 3 2
3番目 7 24 25 4 3 24+25=7^2
4番目 8 15 17 4 1 2*(151+17)=8^2
省12
232: 2023/12/21(木)22:43 ID:KHL6UQJ4(5/9) AAS
ピタゴラス数を満たすm,nは下記のいずれかになる(kは任意の整数)
2^k*(m*n)*(1+(m*n))=m^2*(m-1)*(m+1)+n^2*(n-1)*(n+1)
233: 2023/12/21(木)22:51 ID:KHL6UQJ4(6/9) AAS
2^k*(2*mn+m^2+n^2)=(m^2-n^2)^2
ピタゴラス数を満たすm,nは下記になる(kは任意の整数)
2^k*(mn)*(2^k-(mn))=(m^4-2^k*m^2)+(n^4-2^k*n^2)
234: 2023/12/21(木)22:52 ID:KHL6UQJ4(7/9) AAS
ピタゴラス数を満たすm,nは下記になる(kは任意の整数)
2*(mn)*(2^k-(mn))=(m^4-2^k*m^2)+(n^4-2^k*n^2)
235: 2023/12/21(木)22:58 ID:KHL6UQJ4(8/9) AAS
ピタゴラス数を満たすm,nは下記のいずれかになる(kは任意の整数)
2^k*(2*mn+m^2+n^2)=(m^2-n^2)^2
2^k*((m^2-n^2)+m^2+n^2)=(2mn)^2
236: 2023/12/21(木)23:02 ID:KHL6UQJ4(9/9) AAS
ピタゴラス数を満たすm,nは下記のいずれかになる(kは任意の整数)
2*(mn)*(2^k-(mn))=(m^4-2^k*m^2)+(n^4-2^k*n^2)
2^(k-1)=n^2 ←n=2^aであらわされるときのみ左になる(2^a=2^(k-1)/2:a=(k-1)/2 )
237: 2023/12/22(金)00:44 ID:sEEN5YJU(1/3) AAS
ピタゴラス数を満たすm,nは下記のいずれかになる(pは任意の素数、kは任意の整数)
p^k*(mn)*(1+(mn))=(m^4-m^2)+(n^4-n^2)
33^2+56^2=65^2 m=7 n=4
3^2*(56+65)=33^2
3^k*(2*mn+(m^2+n^2))=(m^2-n^2)^2
2*(mn)*(3^k+(mn))=(m^4-3^k*m^2)+(n^4-3^k*n^2)
2^(k-1)=n^2 ←n=2^aであらわされるときのみ左になる(2^a=2^(k-1)/2:a=(k-1)/2 )
238: 2023/12/22(金)00:49 ID:sEEN5YJU(2/3) AAS
ピタゴラス数を満たすm,nは下記のいずれかになる(pは任意の素数、kは任意の整数)
1316^2+8787^2=8885^2
7^2*2*(8885+8787)=1316^2
2*(mn)*(Πp^k+(mn))=(m^4-Πp^k*m^2)+(n^4-Πp^k*n^2)
239: 2023/12/22(金)00:52 ID:sEEN5YJU(3/3) AAS
A^2+B^2=C^2
A^2=(B+C)*Πp^k
(B+C)*Πp^k+B^2=C^2
B*(1-Πp^k*B)=C*(1+Πp^k*C)
240(1): 2023/12/22(金)09:03 ID:2klI76d6(1) AAS
隠しアイテム的な式はないのか
241: 2023/12/23(土)02:17 ID:O5dB6rNY(1/8) AAS
>>240
(((a^2+b^2)*e^(i*2*arctan(a/b))+2^(3/2)*a*b*e^(i*-π/4)))=-a^2+2ab+b^2
(((a^2+b^2)*e^(i*2*arctan(b/a))+2^(3/2)*a*b*e^(i*-π/4)))=a^2+2ab-b^2
(n+1)^2+2n*(n+1)-n^2=(n+1)^2+2(n+2)*(n+1)-(n+2)^2 ←nに何を入れても等しくなる
(((2^2+1^2)*e^(i*2*arctan(2/1))+2^(3/2)*2*1*e^(i*-π/4)))=1
(((2^2+1^2)*e^(i*2*arctan(1/2))+2^(3/2)*2*1*e^(i*-π/4)))=7
(((2^2+3^2)*e^(i*2*arctan(3/2))+2^(3/2)*2*3*e^(i*-π/4)))=7
省19
242: 2023/12/23(土)20:26 ID:O5dB6rNY(2/8) AAS
√(ζ1(s)*ζ2(s))*e^(-iπ/2)+√(ζ1(s)*ζ2(s))*e^(iπ/2)=ζ(s)
((ζ1(s)*ζ2(s))(1/2^2)*e^(-iπ/2^2)+(ζ1(s)*ζ2(s))^(1/2^2)*e^(iπ/2^2))^2=ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2)
(ζ1(s)*ζ2(s))(1/2^2)*e^(-iπ/2^2)+(ζ1(s)*ζ2(s))^(1/2^2)*e^(iπ/2^2)=(ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2))^(1/2)
((ζ1(s)*ζ2(s))(1/2^3)*e^(-iπ/2^3)+(ζ1(s)*ζ2(s))^(1/2^3)*e^(iπ/2^3))^2=(ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2))^(1/2)+2*(ζ1(s)*ζ2(s))^(1/2^2)
((ζ1(s)*ζ2(s))(1/2^3)*e^(-iπ/2^3)+(ζ1(s)*ζ2(s))^(1/2^3)*e^(iπ/2^3))=((ζ(s)+2*(ζ1(s)*ζ2(s))^(1/2))^(1/2)+2*(ζ1(s)*ζ2(s))^(1/2^2))^(1/2)
省2
243: 2023/12/23(土)20:46 ID:O5dB6rNY(3/8) AAS
e^(i*2pi*(1/2^(1/2+i*14.12)+1/3^(1/2+i*14.12)+1/5^(1/2+i*14.12)+1/7^(1/2+i*14.12)))=0.34907 e^(1.10973 i) ←素数のみのゼータ関数
e^(i*2pi*(1/1^(1/2+i*14.12)+1/4^(1/2+i*14.12)+1/6^(1/2+i*14.12)+1/8^(1/2+i*14.12)))= 1.72006 e^(-2.43462 i) ←非素数のみのゼータ関数
桁が足りないため長さは違うものの約πだけ位相がずれる
244: 2023/12/23(土)21:08 ID:O5dB6rNY(4/8) AAS
e^(i*2pi*(1/2^(1/2+i*14.12)+1/3^(1/2+i*14.12)+1/5^(1/2+i*14.12)+1/7^(1/2+i*14.12)+1/11^(1/2+i*14.12)+・・・))= e^(i*2pi*(X+i*Y))=e^-Y*e^(i*2pi*(X))←素数のみのゼータ関数
e^(i*2pi*(1/1^(1/2+i*14.12)+1/4^(1/2+i*14.12)+1/6^(1/2+i*14.12)+1/8^(1/2+i*14.12)+1/9^(1/2+i*14.12)+・・・))=e^(i*2pi*(-X-i*Y))=e^Y*e^(i*2pi*(-X))←非素数のみのゼータ関数
長さは反比例して角度はπずれる
245: 2023/12/23(土)22:07 ID:O5dB6rNY(5/8) AAS
e^(i*2pi*(a/2^2+b/3+c/5))=e^(i*2pi*(e/60)) ←時計の秒針の回転角度を可変させて1秒ではなく60/2^2秒と60/3秒と60/5秒で動くようにする
a≠2n、b≠3n、c≠5nのとき秒針の先が7^2を除きすべて素数になる
e^(i*2pi*(a/2^2+b/3+c/5))
e^(i*2pi*(a/2^2+b/3+c/5+d/7))
e^(i*2pi*(1/2^2+1/3+3/5+5/7))=e^(-(43 i π)/210) ←43が素数なので=210-47=163も素数
e^(i*2pi*(1/2^2+1/3+3/5+3/7))=e^(-(163 i π)/210) ←163が素数なので=210-163=47も素数
e^(i*2pi*(1/2^2+1/3+3/5+3/7+10/11))=e^(-(2213 i π)/2310) ←2213が素数なので2310-2213=97も素数
省1
246: 2023/12/23(土)23:11 ID:O5dB6rNY(6/8) AAS
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^a)+1)/13^a))
aを大きくして出てくる分子が17^2未満か17^2より大きく17*19より小さくなるように調整する(分母は3*5*7*11*13^nになる)
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^1)/13^1))=e^((1091 i π)/15015)
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^2)/13^2))=e^((323 i π)/195195)
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^3)/13^3))=e^((1889 i π)/2537535)
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-floor((1/2+1/3+1/5+1/7+1/11)*13^4)/13^4))=e^((1457 i π)/32987955) ←1457=31*47 非素数
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^5))/13^5))=e^((461 i π)/428843415)
省1
上下前次1-新書関写板覧索設栞歴
あと 455 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.025s