[過去ログ] 箱入り無数目を語る部屋2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
854(2): 2022/08/12(金)10:57 ID:eRdq+WGu(1/9) AAS
> 任意の n>M(ε) なる正整数nに対して箱の中を当てる側が勝つ確率 p_n は |p_n-(1-1/n)|<ε を満たす.
|p_n-(1-1/n)|=|(1-1/n)-(1-1/n)|=0 なんだから当たり前じゃんw
無意味に小難しくしているだけで、lim[n→∞](1-1/n)=1という当たり前のことしか言ってないw
で、lim[n→∞](1-1/n)=1の意味は、「列数を大きく取れば取るほど当たる確率をいくらでも1に近づけることができる」であって、「列数が∞なら当たる確率=1」ではない。
そして「列数が∞なら当たる確率=1」が誤りであることは>>848が述べた通り。
頭悪すぎ。
そんな>>851に問題
省2
855: 2022/08/12(金)11:13 ID:eRdq+WGu(2/9) AAS
>>853
超準解析を語りたくて話をそっちに持っていこうとしているようだけどやめときな
大学1年の数学もロクに分かっていない君が語っても無意味だから
857(1): 2022/08/12(金)11:18 ID:eRdq+WGu(3/9) AAS
>>856
>どこから無限個の箱とかややこしいことが出て来たんだ
箱入り無数目の1行目「箱がたくさん,可算無限個ある.」から
>>さて、無限個の実数列 s1,s2,…,sn,… に分割することは可能か?
>一般には出来ない
はい、大間違いです。やはり大学1年レベルも分かってなかった。
858(1): 2022/08/12(金)11:25 ID:eRdq+WGu(4/9) AAS
>>856
>その漸近的な結果の振る舞いを式で書くと lim[n→∞](1-1/n)=1 になる
つまり君は>>848に反論している訳ではないということね?
で、反論じゃないなら何を言いたかったの?高校生でも分かる lim[n→∞](1-1/n)=1を言いたかったの?
861: 2022/08/12(金)11:32 ID:eRdq+WGu(5/9) AAS
>>856
>>さて、無限個の実数列 s1,s2,…,sn,… に分割することは可能か?
>一般には出来ない
正解は可能。
有理数全体の集合が可算であることの証明と同じアナロジー。
862(1): 2022/08/12(金)11:33 ID:eRdq+WGu(6/9) AAS
>>859
安心しな、選択公理は無用
てか何で選択公理?w
863: 2022/08/12(金)11:43 ID:eRdq+WGu(7/9) AAS
>>860
趣旨が分からないなら反論するなw
>例えば、無限個の箱に自然数の番号が書かれた玉を入れるが
>自然数に対してその番号が書かれた玉は1個しかなく
>したがってどれか一個の箱にしかない、としよう
>(一応、どんな番号の玉もどこかの箱に入ってるとする)
との前提から
省1
865(1): 2022/08/12(金)11:51 ID:eRdq+WGu(8/9) AAS
>>864
>可算無限個の実数列 s1,s2,…,sn,… の項の総個数は非可算無限個だろ
大間違いだけどなんでそう思うの?
871: 2022/08/12(金)14:32 ID:eRdq+WGu(9/9) AAS
>>866
何の説明にもなってない。
sの項 s_0,s_1,… を
s_4 s_5 s_6
s_3 s_2 s_7
s_0 s_1 s_8
という並べ方で格子点上に埋め込んでいく(NからN^2への写像f)。
省5
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s