代数学演習 (154レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
79: 2023/02/01(水)15:13 ID:G2VQ19ns(1/2) AAS
C(t)をC上の1変数有理関数体とする。aを複素数とし、s = t^3 + 3t^2 +at∈C(t)とおく。C上sで生成されたC(t)の部分体をC(s)とするとき、以下の問に答えよ。
(1) 拡大次数[C(t) : C(s)]を求めよ。
(2) C(t)/C(s)がガロア拡大となる複素数aをすべて求めよ。
(2015年 京大)
80: 2023/02/01(水)15:45 ID:G2VQ19ns(2/2) AAS
(1)
多項式F(X)∈C[s][X]を
F(X) = X^3 + 3X^2 + aX - s
と定義する。FがtのC(s)上の最小多項式であることを示す。
明らかにF(t) = 0である。
FはC[s][X]で既約である。仮にFが既約でないとすれば、1次式と2次式の積に分解するが、1次の因数は(X ± 1)か(X ± s)でないといけない。しかし、係数を比較すれば、そのような分解は不可能であることが分かる。
C[s][X]はUFDなので、FはC(s)[X]でも既約である。
省11
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.536s*