[過去ログ]
IUTを読むための用語集資料スレ2 (489レス)
IUTを読むための用語集資料スレ2 http://rio2016.5ch.net/test/read.cgi/math/1606813903/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
257: 132人目の素数さん [sage] 2022/06/12(日) 20:46:33.75 ID:Vf6rE6Wr >>255 https://en.wikipedia.org/wiki/Teichm%C3%BCller_space Teichmuller space It can be viewed as a moduli space for marked hyperbolic structure on the surface, and this endows it with a natural topology for which it is homeomorphic to a ball of dimension 6g-6 for a surface of genus g >= 2. In this way Teichmuller space can be viewed as the universal covering orbifold of the Riemann moduli space. Contents 1 History 2 Definitions 2.1 Teichmuller space from complex structures 2.2 The Teichmuller space of the torus and flat metrics 2.3 Finite type surfaces 2.4 Teichmuller spaces and hyperbolic metrics 2.5 The topology on Teichmuller space 2.6 More examples of small Teichmuller spaces 2.7 Teichmuller space and conformal structures 2.8 Teichmuller spaces as representation spaces 2.9 A remark on categories 2.10 Infinite-dimensional Teichmuller spaces 3 Action of the mapping class group and relation to moduli space 3.1 The map to moduli space 3.2 Action of the mapping class group 3.3 Fixed points 4 Coordinates 4.1 Fenchel?Nielsen coordinates 4.2 Shear coordinates 4.3 Earthquakes 5 Analytic theory 5.1 Quasiconformal mappings 5.2 Quadratic differentials and the Bers embedding 5.3 Teichmuller mappings 6 Metrics 6.1 The Teichmuller metric 6.2 The Weil?Petersson metric 7 Compactifications 7.1 Thurston compactification 7.2 Bers compactification 7.3 Teichmuller compactification 7.4 Gardiner?Masur compactification 8 Large-scale geometry 9 Complex geometry 9.1 Metrics coming from the complex structure 9.2 Kahler metrics on Teichmuller space 9.3 Equivalence of metrics 10 See also 11 References 12 Sources 13 Further reading つづく http://rio2016.5ch.net/test/read.cgi/math/1606813903/257
258: 132人目の素数さん [sage] 2022/06/12(日) 20:47:04.31 ID:Vf6rE6Wr >>257 つづき History Moduli spaces for Riemann surfaces and related Fuchsian groups have been studied since the work of Bernhard Riemann (1826-1866), who knew that 6g-6 parameters were needed to describe the variations of complex structures on a surface of genus g >= 2. The early study of Teichmuller space, in the late nineteenth?early twentieth century, was geometric and founded on the interpretation of Riemann surfaces as hyperbolic surfaces. Among the main contributors were Felix Klein, Henri Poincare, Paul Koebe, Jakob Nielsen, Robert Fricke and Werner Fenchel. The main contribution of Teichmuller to the study of moduli was the introduction of quasiconformal mappings to the subject. They allow us to give much more depth to the study of moduli spaces by endowing them with additional features that were not present in the previous, more elementary works. After World War II the subject was developed further in this analytic vein, in particular by Lars Ahlfors and Lipman Bers. The theory continues to be active, with numerous studies of the complex structure of Teichmuller space (introduced by Bers). The geometric vein in the study of Teichmuller space was revived following the work of William Thurston in the late 1970s, who introduced a geometric compactification which he used in his study of the mapping class group of a surface. Other more combinatorial objects associated to this group (in particular the curve complex) have also been related to Teichmuller space, and this is a very active subject of research in geometric group theory. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1606813903/258
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.017s