[過去ログ]
IUTを読むための用語集資料スレ2 (489レス)
IUTを読むための用語集資料スレ2 http://rio2016.5ch.net/test/read.cgi/math/1606813903/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
256: 132人目の素数さん [sage] 2022/06/12(日) 18:27:16.23 ID:Vf6rE6Wr https://www.cajpn.org/ 複素解析学ホームページ https://www.cajpn.org/refs/thesis.html 修士・博士論文アーカイブ http://www.cajpn.org/refs/thesis/14M-Fujino.pdf 名古屋大学大学院 多元数理科学研究科修士論文 C / Z との擬等角同値性について 著者氏名 藤野 弘基 指導教員 大沢 健夫 2014年2月 謝辞 川平友規先生には, 本研究の進展において重要となった “擬円板の性質 を用いる” というアイデアを頂きましたことを, 厚く御礼申し上げます. 第 1 章 擬等角写像 1 1.1 曲線族モジュラス . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 極値的距離 . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 擬等角写像 . . . . . . . . . . . . . . . . . . . . . . . . . . 8 第1章 擬等角写像 Ahlfors?Beurling [3]によって導入された極値的長さを考えることによっ て, 擬等角写像が特徴付けられる. これは擬等角写像の幾何学的定義と呼 ばれ現在では一般的によく知られていることである. この章では極値的長 さの逆数として与えられる量, 曲線族モジュラスを用いて擬等角写像を定 義する. 曲線族モジュラスは曲線族全体の上で定義された外測度を定める など, 極値的長さに比べ扱いやすい性質を多く持つ. http://rio2016.5ch.net/test/read.cgi/math/1606813903/256
257: 132人目の素数さん [sage] 2022/06/12(日) 20:46:33.75 ID:Vf6rE6Wr >>255 https://en.wikipedia.org/wiki/Teichm%C3%BCller_space Teichmuller space It can be viewed as a moduli space for marked hyperbolic structure on the surface, and this endows it with a natural topology for which it is homeomorphic to a ball of dimension 6g-6 for a surface of genus g >= 2. In this way Teichmuller space can be viewed as the universal covering orbifold of the Riemann moduli space. Contents 1 History 2 Definitions 2.1 Teichmuller space from complex structures 2.2 The Teichmuller space of the torus and flat metrics 2.3 Finite type surfaces 2.4 Teichmuller spaces and hyperbolic metrics 2.5 The topology on Teichmuller space 2.6 More examples of small Teichmuller spaces 2.7 Teichmuller space and conformal structures 2.8 Teichmuller spaces as representation spaces 2.9 A remark on categories 2.10 Infinite-dimensional Teichmuller spaces 3 Action of the mapping class group and relation to moduli space 3.1 The map to moduli space 3.2 Action of the mapping class group 3.3 Fixed points 4 Coordinates 4.1 Fenchel?Nielsen coordinates 4.2 Shear coordinates 4.3 Earthquakes 5 Analytic theory 5.1 Quasiconformal mappings 5.2 Quadratic differentials and the Bers embedding 5.3 Teichmuller mappings 6 Metrics 6.1 The Teichmuller metric 6.2 The Weil?Petersson metric 7 Compactifications 7.1 Thurston compactification 7.2 Bers compactification 7.3 Teichmuller compactification 7.4 Gardiner?Masur compactification 8 Large-scale geometry 9 Complex geometry 9.1 Metrics coming from the complex structure 9.2 Kahler metrics on Teichmuller space 9.3 Equivalence of metrics 10 See also 11 References 12 Sources 13 Further reading つづく http://rio2016.5ch.net/test/read.cgi/math/1606813903/257
258: 132人目の素数さん [sage] 2022/06/12(日) 20:47:04.31 ID:Vf6rE6Wr >>257 つづき History Moduli spaces for Riemann surfaces and related Fuchsian groups have been studied since the work of Bernhard Riemann (1826-1866), who knew that 6g-6 parameters were needed to describe the variations of complex structures on a surface of genus g >= 2. The early study of Teichmuller space, in the late nineteenth?early twentieth century, was geometric and founded on the interpretation of Riemann surfaces as hyperbolic surfaces. Among the main contributors were Felix Klein, Henri Poincare, Paul Koebe, Jakob Nielsen, Robert Fricke and Werner Fenchel. The main contribution of Teichmuller to the study of moduli was the introduction of quasiconformal mappings to the subject. They allow us to give much more depth to the study of moduli spaces by endowing them with additional features that were not present in the previous, more elementary works. After World War II the subject was developed further in this analytic vein, in particular by Lars Ahlfors and Lipman Bers. The theory continues to be active, with numerous studies of the complex structure of Teichmuller space (introduced by Bers). The geometric vein in the study of Teichmuller space was revived following the work of William Thurston in the late 1970s, who introduced a geometric compactification which he used in his study of the mapping class group of a surface. Other more combinatorial objects associated to this group (in particular the curve complex) have also been related to Teichmuller space, and this is a very active subject of research in geometric group theory. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1606813903/258
259: 132人目の素数さん [sage] 2022/06/12(日) 23:01:59.33 ID:Vf6rE6Wr 擬等角写像 Quasiconformal mapping https://en.wikipedia.org/wiki/Quasiconformal_mapping Quasiconformal mapping Contents 1 Definition 2 A few facts about quasiconformal mappings 3 Measurable Riemann mapping theorem 4 Computational quasi-conformal geometry http://rio2016.5ch.net/test/read.cgi/math/1606813903/259
260: 132人目の素数さん [sage] 2022/06/12(日) 23:11:50.47 ID:Vf6rE6Wr 似ているが、ちょっと違う Quasiregular map:between Euclidean spaces Rn of the same dimension or, more generally,・・ https://en.wikipedia.org/wiki/Quasiregular_map Quasiregular map In the mathematical field of analysis, quasiregular maps are a class of continuous maps between Euclidean spaces Rn of the same dimension or, more generally, between Riemannian manifolds of the same dimension, which share some of the basic properties with holomorphic functions of one complex variable. Contents 1 Motivation 2 Definition 3 Properties 4 Rickman's theorem 5 Connection with potential theory http://rio2016.5ch.net/test/read.cgi/math/1606813903/260
261: 132人目の素数さん [sage] 2022/06/12(日) 23:24:14.69 ID:Vf6rE6Wr Punctured Torus Group https://www.cajpn.org/ref.html 複素解析学ホームページ 資料室 1998 Punctured Torus Groupに対するending lamination予想の解決(糸健太郎,小森洋平,須川敏幸,谷口雅彦) 目次・1-5章 PDF 1459KB https://www.cajpn.org/refs/topics-98-1.pdf 6-9章 PDF 1452KB https://www.cajpn.org/refs/topics-98-2.pdf 10-12章・参考文献 PDF 1546KB https://www.cajpn.org/refs/topics-98-3.pdf http://rio2016.5ch.net/test/read.cgi/math/1606813903/261
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.796s*