[過去ログ]
IUTを読むための用語集資料スレ2 (489レス)
IUTを読むための用語集資料スレ2 http://rio2016.5ch.net/test/read.cgi/math/1606813903/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
9: 132人目の素数さん [] 2021/02/07(日) 23:07:33.01 ID:1q1vuYYo https://ejje.weblio.jp/content/modular modularとは 主な意味 基準寸法の 研究社 英和コンピューター用語辞典での「modular」の意味 ・modular arithmetic 法の代数《ある数を法として同じ数は同じとみなした整数の計算; ⇒mod》 https://www.weblio.jp/content/%E3%83%A2%E3%82%B8%E3%83%A5%E3%83%A9%E3%83%BC ウィキペディア モジュール (モジュラー から転送) 出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/05/21 04:41 UTC 版) モジュール(英: module)とは、工学などにおける設計上の概念で、システムを構成する要素となるもの。いくつかの部品的機能を集め、まとまりのある機能を持った部品のこと。モジュールに従っているものをモジュラー(英: modular)という。 http://rio2016.5ch.net/test/read.cgi/math/1606813903/9
10: 132人目の素数さん [] 2021/02/07(日) 23:09:00.27 ID:1q1vuYYo https://ja.wikipedia.org/wiki/%E3%83%A2%E3%82%B8%E3%83%A5%E3%83%A9%E3%83%BC%E6%9B%B2%E7%B7%9A モジュラー曲線 モジュラー曲線(モジュラーきょくせん)とは複素上半平面 H の合同部分群 Γ の作用による商として定義されるリーマン面のことである。合同部分群 Γ とは、整数の 2 × 2 の行列 SL(2, Z) のある部分群のことである。モジュラー曲線はコンパクトとは限らないが、有限個の Γ のカスプと呼ばれる点を加えることでコンパクト化されたモジュラー曲線 X(Γ) を定めることができる。モジュラー曲線の点は、楕円曲線とそれに付随する群 Γ に関係するある構造をもったものの同型類の集合とみなすことができ、モジュラー曲線を代数幾何的に、また有理数体 Q や円分体の上でモジュラー曲線を定義することもできる。このことからモジュラー曲線は整数論で重要な対象である。 目次 1 解析的定義 1.1 コンパクト化されたモジュラー曲線 2 例 3 種数 3.1 種数 0 4 モンスター群との関係 コンパクト化されたモジュラー曲線 Y(Γ) のコンパクト化は、Γ のカスプと呼ばれる有限個の点を加えることにより得られる。特に、このコンパクト化は、拡張された複素上半平面 H* = H ∪ Q ∪ {∞} 上の Γ の作用を考えることにより得られる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1606813903/10
11: 132人目の素数さん [] 2021/02/07(日) 23:09:33.83 ID:1q1vuYYo >>10 つづき 例 モジュラー曲線 X(5) は種数 0 を持ち、正二十面体の頂点に 12個のカスプを持つリーマン球面である。被覆 X(5) → X(1) はリーマン球面上の20面体群(英語版)(icosahedral group)の作用による商である。この群は位数 60 の単純群で、対称群 A5 および PSL(2, 5) とに同型である。 モジュラー曲線 X(7) は、カスプを 24個持つ種数 3 のクライン四次曲線(英語版)(Klein quartic)である。これは3つのハンドルつきの曲面を 24 個の七角形でタイリングし、各々の面の中心にカスプを持っていると解釈することができる。これらのタイリングは、dessins d'enfants[2] やバイリ函数(英語版)(Belyi function)を通して理解することができる。カスプは、無限遠点 ∞ 上にある(赤い点)、一方、頂点と辺の中心にある(黒と白の点)カスプは、0 と 1 にある。被覆 X(7) → X(1) のガロア群は、PSL(2, 7) に同型な位数 168 の単純群である。 X0(N) には、明確な古典モデルである古典モジュラー曲線(英語版)(classical modular curve)が存在し、これを「モジュラー曲線」という場合もある。 これらの曲線は、レベル構造つき楕円曲線のモジュライ空間として解釈される。このため、モジュラー曲線は数論幾何(arithmetic geometry)で重要な役割を果たす。レベル N のモジュラー曲線 X(N) は、楕円曲線とそのN-等分点の基底の組のモジュライ空間である。X0(N) と X1(N) の付加構造は、それぞれ、位数 N の巡回部分群、位数 N の点である。これらの曲線は、非常に詳しく研究されており、特に、X0(N) は有理数体上で定義することができる。 モジュラ曲線を定義する方程式は、モジュラー方程式(英語版)(modular equation)の最も良く知られた例である。この「最良のモデル」は楕円函数論から直接得られる理論とは非常に異なっている。ヘッケ作用素は、二つのモジュラー曲線の間の対応として幾何学的に研究される。 注意: コンパクトな H の商は、モジュラ群の部分群以外に、フックス群(英語版)(Fuchsian group) Γ に対し発生する。 つづく http://rio2016.5ch.net/test/read.cgi/math/1606813903/11
12: 132人目の素数さん [] 2021/02/07(日) 23:10:06.62 ID:1q1vuYYo >>11 つづき 種数 X(5) は種数 0 であり、X(7) は種数 3 であり、X(11) は種数26 であることがわかる。p = 2 あるいは 3 に対しは分岐を考えに入れる、つまり、PSL(2, Z) には位数 p の元が存在し、PSL(2, 2) は位数 3 というよりも位数 6 であることを考慮する必要がある。N を因子として含むレベル N のモジュラー曲線の種数についてのより複雑な公式がある。 種数 0 一般に、モジュラー函数体とは、モジュラー曲線(あるいは既約であるような他のモジュライ空間)の函数体である。種数が 0 であることは、そのような函数体が唯一の超越函数を生成元として持っていることを意味し、たとえば、j-函数は X(1)=PSL(2,Z )\ H の函数体を生成する。この生成元はメビウス変換で移りあう函数を同一視すると一意となり、適切に正規化することができ、そのような函数を Hauptmodul (あるいは主モジュラー函数(principal modular function)と呼ぶ。 空間 X1(n) は n = 1, ..., 10 と n = 12 に対して、種数 0 である。これらの曲線は、Q 上で定義されているので、そのような曲線上には無限に多くの有理点が存在し、よって、これらの n の値に対し n-捩れを持つ有理数体上定義された楕円曲線が無限に存在する。n がこれらの値のときのみ、逆のステートメントが成り立ち、これがメイザーの捩れ定理である。 モンスター群との関係 詳細は「モンストラス・ムーンシャイン」を参照 種数 0 のモジュラー曲線はモンストラス・ムーンシャイン予想との関係で非常に重要であることが判明した。モジュラー曲線の Hauptmoduln を q-展開した係数の最初のいくつかが、19世紀に既に計算されていたが、最も大きな単純散在モンスター群の表現空間の次元と同じになっていることが、非常に衝撃的である。 もうひとつの関係は、SL(2, R) の Γ0(p) の正規化群 Γ0(p)+ から定まるモジュラー曲線が種数 0 であることと、p が 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 あるいは、71 であることと同値である。さらにこれらの素数はモンスター群の位数の素因子と一致する。この Γ0(p)+ についての結果は、ジャン=ピエール・セール(Jean-Pierre Serre), アンドレ・オッグ(英語版)(Andrew Ogg)とジョン・トンプソン(John G. Thompson)が1970年代に発見し、モジュラー群とモンスター群の関係を発見したオッグは、この事実を説明したものには、ジャックダニエル(テネシー・ウイスキー)のボトルを進呈すると論文に記載した。 この関係は非常に深く、リチャード・ボーチャーズ(Richard Borcherds)により示されたように、一般カッツ・ムーディリー代数とも深く関係する。この分野の仕事は、至るところで正則でカスプを持つモジュラー形式に対し、有理型でありカスプで極を持つことのできるモジュラー函数の重要性を示している。これらの仕事は、20世紀の重要な研究の対象となった。 http://rio2016.5ch.net/test/read.cgi/math/1606813903/12
13: 132人目の素数さん [] 2021/02/07(日) 23:10:55.67 ID:1q1vuYYo https://en.wikipedia.org/wiki/Belyi%27s_theorem#Belyi_functions Belyi's theorem In mathematics, Belyi's theorem on algebraic curves states that any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only. This is a result of G. V. Belyi from 1979. At the time it was considered surprising, and it spurred Grothendieck to develop his theory of dessins d'enfant, which describes nonsingular algebraic curves over the algebraic numbers using combinatorial data. Contents 1 Quotients of the upper half-plane 2 Belyi functions 3 Applications Quotients of the upper half-plane It follows that the Riemann surface in question can be taken to be H/Γ with H the upper half-plane and Γ of finite index in the modular group, compactified by cusps. Since the modular group has non-congruence subgroups, it is not the conclusion that any such curve is a modular curve. つづく http://rio2016.5ch.net/test/read.cgi/math/1606813903/13
14: 132人目の素数さん [] 2021/02/07(日) 23:11:19.92 ID:1q1vuYYo >>13 つづき Belyi functions A Belyi function is a holomorphic map from a compact Riemann surface S to the complex projective line P1(C) ramified only over three points, which after a Mobius transformation may be taken to be {\displaystyle \{0,1,\infty \}}\{0,1,\infty \}. Belyi functions may be described combinatorially by dessins d'enfants. Belyi functions and dessins d'enfants ? but not Belyi's theorem ? date at least to the work of Felix Klein; he used them in his article (Klein 1879) to study an 11-fold cover of the complex projective line with monodromy group PSL(2,11).[1] Applications Belyi's theorem is an existence theorem for Belyi functions, and has subsequently been much used in the inverse Galois problem. http://rio2016.5ch.net/test/read.cgi/math/1606813903/14
15: 132人目の素数さん [] 2021/02/07(日) 23:12:30.85 ID:1q1vuYYo https://en.wikipedia.org/wiki/Dessin_d%27enfant Dessin d'enfant In mathematics, a dessin d'enfant is a type of graph embedding used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute Galois group of the rational numbers. The name of these embeddings is French for a "child's drawing"; its plural is either dessins d'enfant, "child's drawings", or dessins d'enfants, "children's drawings". A dessin d'enfant is a graph, with its vertices colored alternately black and white, embedded in an oriented surface that, in many cases, is simply a plane. For the coloring to exist, the graph must be bipartite. The faces of the embedding must be topological disks. The surface and the embedding may be described combinatorially using a rotation system, a cyclic order of the edges surrounding each vertex of the graph that describes the order in which the edges would be crossed by a path that travels clockwise on the surface in a small loop around the vertex. Any dessin can provide the surface it is embedded in with a structure as a Riemann surface. It is natural to ask which Riemann surfaces arise in this way. The answer is provided by Belyi's theorem, which states that the Riemann surfaces that can be described by dessins are precisely those that can be defined as algebraic curves over the field of algebraic numbers. The absolute Galois group transforms these particular curves into each other, and thereby also transforms the underlying dessins. For a more detailed treatment of this subject, see Schneps (1994) or Lando & Zvonkin (2004). Contents 1 History 1.1 19th century 1.2 20th century 2 Riemann surfaces and Belyi pairs 6 The absolute Galois group and its invariants つづく http://rio2016.5ch.net/test/read.cgi/math/1606813903/15
16: 132人目の素数さん [] 2021/02/07(日) 23:13:25.61 ID:1q1vuYYo >>15 つづき History 19th century Early proto-forms of dessins d'enfants appeared as early as 1856 in the icosian calculus of William Rowan Hamilton;[1] in modern terms, these are Hamiltonian paths on the icosahedral graph. Recognizable modern dessins d'enfants and Belyi functions were used by Felix Klein (1879). Klein called these diagrams Linienzuge (German, plural of Linienzug "line-track", also used as a term for polygon); he used a white circle for the preimage of 0 and a '+' for the preimage of 1, rather than a black circle for 0 and white circle for 1 as in modern notation.[2] He used these diagrams to construct an 11-fold cover of the Riemann sphere by itself, with monodromy group PSL(2,11), following earlier constructions of a 7-fold cover with monodromy PSL(2,7) connected to the Klein quartic in (Klein 1878?1879a, 1878?1879b). These were all related to his investigations of the geometry of the quintic equation and the group A5 ? PSL(2,5), collected in his famous 1884/88 Lectures on the Icosahedron. The three surfaces constructed in this way from these three groups were much later shown to be closely related through the phenomenon of trinity. 20th century Dessins d'enfant in their modern form were then rediscovered over a century later and named by Alexander Grothendieck in 1984 in his Esquisse d'un Programme.[3] Zapponi (2003) quotes Grothendieck regarding his discovery of the Galois action on dessins d'enfants: This discovery, which is technically so simple, made a very strong impression on me, and it represents a decisive turning point in the course of my reflections, a shift in particular of my centre of interest in mathematics, which suddenly found itself strongly focused. I do not believe that a mathematical fact has ever struck me quite so strongly as this one, nor had a comparable psychological impact. This is surely because of the very familiar, non-technical nature of the objects considered, of which any child’s drawing scrawled on a bit of paper (at least if the drawing is made without lifting the pencil) gives a perfectly explicit example. To such a dessin we find associated subtle arithmetic invariants, which are completely turned topsy-turvy as soon as we add one more stroke. Part of the theory had already been developed independently by Jones & Singerman (1978) some time before Grothendieck. They outline the correspondence between maps on topological surfaces, maps on Riemann surfaces, and groups with certain distinguished generators, but do not consider the Galois action. Their notion of a map corresponds to a particular instance of a dessin d'enfant. Later work by Bryant & Singerman (1985) extends the treatment to surfaces with a boundary. つづく http://rio2016.5ch.net/test/read.cgi/math/1606813903/16
17: 132人目の素数さん [] 2021/02/07(日) 23:13:55.73 ID:1q1vuYYo >>16 つづき https://upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Icosahedral_reflection_domains.png/330px-Icosahedral_reflection_domains.png The triangulation of the sphere with (2,3,5) triangle group, generated by using the regular dodecahedron to construct a clean dessin https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/3-7_kisrhombille.svg/330px-3-7_kisrhombille.svg.png The triangulation of the hyperbolic plane with (2,3,7) triangle group generated as the universal cover of the Klein quartic http://rio2016.5ch.net/test/read.cgi/math/1606813903/17
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.027s