[過去ログ]
純粋・応用数学(含むガロア理論)3 (1002レス)
純粋・応用数学(含むガロア理論)3 http://rio2016.5ch.net/test/read.cgi/math/1595166668/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
669: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:08:00.68 ID:2yNZ8A8t >>668 つづき 生成ランク 単項イデアル整域 (PID) 上の有限生成加群が捩れなし(英語版) (torsion-free) であることと自由であることは同値である。 これはPID上の有限生成加群の構造定理の結果である。 その基本的な形は、PID 上の有限生成加群はねじれ加群と自由加群の直和であるというものである。 しかしそれは直接次のようにも示せる。 M を PID A 上捩れなし有限生成加群とし、F を極大自由部分加群とする。 f を A の元であって fM⊂ F とする。 このとき fM は自由加群の部分加群で A は PID なので自由である。 しかし今 f:M→ fM は M が捩れなしだから同型である。 https://ja.wikipedia.org/wiki/%E7%92%B0%E3%81%AE%E5%B1%80%E6%89%80%E5%8C%96 環の局所化 (抜粋) 環の局所化(きょくしょか、英: localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)[注 1] は、環に乗法逆元を機械的に添加する方法である。すなわち、環 R とその部分集合 S が与えられたとき、環 R' と R から R' への環準同型を構成して、S の準同型像が R' における単元(可逆元)のみからなるようにする。さらに、R' が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 R の部分集合 S による局所化は S?1R で表され、あるいは S が素イデアル {p}}} {p}} の補集合であるときには R_ {p}}}R_{{ {p}}}} で表される。S?1R のことを RS と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/669
670: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/25(火) 15:08:20.86 ID:2yNZ8A8t >>669 つづき 用語について 「局所化」の名の起源は代数幾何学にある。R はある幾何学的対象(代数多様体)の上で定義された函数環とする。この多様体を点 p の近傍で「局所的に」調べようとするならば、p の近傍で 0 でないような函数全体の成す集合 S を考えることになる。その意味で、R を S に関して局所化して得られる環 S?1R は p の近傍における V の挙動についての情報のみをふくんでいる(局所環も参照)。 数論および代数的位相幾何学において、数 n「における」環や空間とか、n から「遠い」などという言及をすることがある。「n から遠い」("away from n") の意味は、「その環の中で n が可逆」(従って、Z[1/n]-代数になる)ということである。例えば、体については「素数 p から遠い」と言えば「その体の標数は p と異なる」という意味になる。Z[1/2] は「2 から遠い」が F2 や Z はそうではない。 形式的な構成 単元の積はふたたび単元であり、環準同型は積を保つことから、局所化に用いる S は R の乗法モノイドの部分モノイドであることが求められる。すなわち、S は 1 を含み、s, t が S の元ならば st もやはり S に含まれる。環 R のこのような性質を持つ部分集合を乗法的集合(乗法系)あるいは積閉集合(乗法的閉集合)と呼ぶ。 環 R が整域である場合には、局所化は容易に構成することができる。0 が単元となるような環は自明な環 {0} のみであるから、S に 0 が含まれるときには、局所化 S?1R は必ず {0} となる。それ以外の場合には、R の商体 K を利用することができる。すなわち、S?1R として、商体 K の部分環であって、R の元 r と S の元 s によって r/s の形に表される元全体になっているものをとればよい。この場合、自然写像 R → S?1R は標準的な埋め込みであり、特に単射になる(一般の場合にはこれは保証されない)。例えば、二進分数(英語版) の全体は、整数環 Z の 2 冪全体の成す積閉集合に関する局所化である。この場合 S?1R が二進小数の全体で R が整数全体、S は 2 冪の全体であって、R から S?1R への自然写像は単射である。 つづく http://rio2016.5ch.net/test/read.cgi/math/1595166668/670
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s