[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む73 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む73 http://rio2016.5ch.net/test/read.cgi/math/1563282025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
860: 132人目の素数さん [] 2019/07/31(水) 08:42:40.28 ID:oTj4KA7B >>851 >下記の通り「時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという」だから >「Dが一定」である必要なし! rはXが属す同値類の代表ってことがどういうことか理解してるか? rとXは先頭のたかだか有限個の項が異なるだけ、つまりほとんどすべての項が一致している ということになるんだが、スレ主は理解してないのだろう。 きちんと確率値99/100を言うには時枝の手順(100列に分け、そのいずれかをランダムに選択する) が必要ってだけで、ほとんどすべての項が一致してるのだから、数当てができて何の不思議も無いんだよ。 スレ主は同値類を理解してないからそれが分からない。 http://rio2016.5ch.net/test/read.cgi/math/1563282025/860
861: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/31(水) 09:59:42.54 ID:/g9to0os >>860 問答無用!w(^^; (>>851より) 下記の通り「時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという」だから 「Dが一定」である必要なし! (>>829より) 1)独立同分布(IID)を仮定しよう。具体的に、コイントスで、{0,1}を入れた(>>812) 可算無限個の確率変数の族X1,X2,・・・(時枝記事後半にある通り) で任意のi∈Nで、Xiは確率1/2で、0か1かの値を取る 2)ところが、時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという これは矛盾である(>>812) 3)独立同分布(IID)を仮定した瞬間、これで終りでしょw(^^ これには、全部裏付けがあるよ(下記) >>465 >>474 >>479 (過去なんども繰り返し述べてきた通りだが、確率過程論の知識がないと、時枝不成立がなかなか理解できないのだろう) >必ずXD=rD (>>831より) 時枝の設定は、次の通り スレ20 https://rio2016.5ch.net/test/read.cgi/math/1512046472/18- (抜粋) 過去スレ20 再録 http://rio2016.2ch.net/test/read.cgi/math/1466279209/2-7 1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. ・・・・ 列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はs^k(D)=rD」と賭ければ,めでたく確率99/100で勝てる. 確率1-ε で勝てることも明らかであろう. (引用終り) ここで、実数値rDは、(-∞,+∞)の範囲をカバー出来ていなければ、的中確率99/100など得られない だが、コイントスのIID 2値{0,1}のみとは、真っ向矛盾している コイントスのIID 2値{0,1}のみを仮定すれば、実数値rDで的中確率99/100など得られるはずがない! 「必ずXD=rD」というが、例えばrD=e^π 又はrD=πなどの実数値(上記時枝記事記載の通り)では、コイントスの2値{0,1}は的中できるはずがない!!(^^ QED http://rio2016.5ch.net/test/read.cgi/math/1563282025/861
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.041s