[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む73 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む73 http://rio2016.5ch.net/test/read.cgi/math/1563282025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
530: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/07/24(水) 13:49:20.02 ID:2K17fA1S >>528 >要するに、からめる相手がスレ主しかいないから >スレ主にからんでいる。 ええ 適当にあしらって 踊らせますw(^^; http://rio2016.5ch.net/test/read.cgi/math/1563282025/530
486: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/07/23(火) 08:14:24.84 ID:Iq5QMAZ/ >>479 補足 過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記) (参考:確率論の専門家さん ID:f9oaWn8A と ID:1JE/S25W) スレ20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/519- 519 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:27:11.14 ID:f9oaWn8A [4/13] >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 522 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:40:29.88 ID:f9oaWn8A [5/13] 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 528 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:03:57.29 ID:f9oaWn8A [8/13] おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R,B(R))の可測関数である. もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない 532 返信:132人目の素数さん[] 投稿日:2016/07/03(日) 23:15:17.47 ID:f9oaWn8A [11/13] >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1563282025/486
811: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/30(火) 11:29:24.34 ID:NVdqdEIy >>801 補足 >証明は? ”それの証明ってあるかな 100個中99個だから99/100としか言ってるようにしか見えないけど.”(by 確率論の専門家さん(2016/07/03))(^^ (>>486より再録) 過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記) (参考確率論の専門家さん ID:f9oaWn8A) スレ20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/519- 519 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 522 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 528 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である. もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない 532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1563282025/811
830: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/30(火) 21:22:59.45 ID:ZO7POl5E >>829 つづき なお (>>811より ) スレ20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/532- 532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) 要するに、全事象Ωに対して、 P(Ω)=1が証明できないでしょ!w(^^ (できると思うなら”P(Ω)=1”を証明してみろ!! その過程で自分のバカさ加減を知るだろうさw(^^ ) つまり、コルモゴロフの公理が満たされない (言い換えれば、可測性が保証されないので) だから、公理的確率論が使えず、P(d_X≧d_Y)≧1/2とはいえない!!w(^^ 分ってないねーw (参考) https://ja.wikipedia.org/wiki/%E7%A2%BA%E7%8E%87%E7%A9%BA%E9%96%93 確率空間 (抜粋) コルモゴロフの公理 確率測度の定義は、コルモゴロフによる次の確率の公理の形にまとめることができる。 第一公理:確率は 0 以上 1 以下である:0 =< P(E) =< 1 for all E ∈ E。 第二公理:全事象 S の確率は 1 である:P(S) = 1。 第三公理:完全加法的である (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1563282025/830
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.027s