[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む73 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む73 http://rio2016.5ch.net/test/read.cgi/math/1563282025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
486: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/07/23(火) 08:14:24.84 ID:Iq5QMAZ/ >>479 補足 過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記) (参考:確率論の専門家さん ID:f9oaWn8A と ID:1JE/S25W) スレ20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/519- 519 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:27:11.14 ID:f9oaWn8A [4/13] >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 522 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:40:29.88 ID:f9oaWn8A [5/13] 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 528 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:03:57.29 ID:f9oaWn8A [8/13] おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R,B(R))の可測関数である. もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない 532 返信:132人目の素数さん[] 投稿日:2016/07/03(日) 23:15:17.47 ID:f9oaWn8A [11/13] >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1563282025/486
488: 哀れな素人 [] 2019/07/23(火) 08:33:17.81 ID:oSJEMvGb >>486にスレ主が引用している男たちにしても、 数学知識はあるが、時枝問題が 具体的にどのような問題であるかが全然分っていない(笑 だから延々と論争が続くことになる(笑 ところが僕のように、知識はなくても、 具体的にどのような問題なのか、を考える者は、 たった三日で時枝戦略不成立の理由を突き止めた(笑 この、知識はあるが具体的な思考ができない、 という点が、現代の数学生に共通した欠点である。 なぜこういうことになるかというと、数学が抽象化しているからである。 数学の抽象化、それが現代数学の最大の弊害なのだが、 ほとんどの数学人は、逆に、それを数学の進歩だと勘違いしている。 http://rio2016.5ch.net/test/read.cgi/math/1563282025/488
507: 132人目の素数さん [sage] 2019/07/23(火) 23:39:54.65 ID:Z0BnCkNP >>486 確率論の専門家氏曰く >P(h(Y)>h(Z))=1/2であれば嬉しい. >hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 これ、時枝解法を誤解しています(^^; 時枝解法はそもそも P(h(Y)>h(Z)) なる確率を考えていません(^^; 時枝解法の考え方は以下です。 ------------------ h:R^N→N を数列の決定番号を与える関数とする。 時枝記事の方法で、与えられた数列 s を2列 s1,s2 に分けたとする。(話を簡単にするために h(s1)≠h(s2) とする。) このとき、P(h(s1)>h(s2))=1/2 は言えない。 一方、h(s1),h(s2) のいずれかをランダムに選んだ方を d1、他方を d2 と置けば、P(d1>d2)=1/2 が言える。 ------------------ P(h(s1)>h(s2))=1/2 は言えないが、P(d1>d2)=1/2 は言える。ここ、重要ですよ〜(^^ このレス何度目だろう? 理解できないなら口をつぐんでもらえませんか? 理解しないまま嘘デタラメ垂れ流すの止めてもらえませんか? http://rio2016.5ch.net/test/read.cgi/math/1563282025/507
646: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/27(土) 12:41:33.27 ID:tVcqhmZw >>486 訂正 遠隔レスすまん (引用開始) 528 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:03:57.29 ID:f9oaWn8A [8/13] おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である. もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない (引用終り) です。 <訂正箇所> Y,Zはそれぞれ(Ω,F)から(R,B(R))の可測関数である. ↓ Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である. な (根拠は下記。下記529の”(R,B(R))ではなくすべて(R^N,B(R^N))だな”で、1つ訂正抜けがあった) スレ20 https://rio2016.5ch.net/test/read.cgi/math/1466279209/528- 528 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:03:57.29 ID:f9oaWn8A [8/13] おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R,B(R))の可測関数である. もしhが(R,B(R))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R,B(R))から(N,2^N)への可測関数とは正直思えない 529 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:04:46.18 ID:f9oaWn8A [9/13] >>528 自己レス (R,B(R))ではなくすべて(R^N,B(R^N))だな (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1563282025/646
811: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/30(火) 11:29:24.34 ID:NVdqdEIy >>801 補足 >証明は? ”それの証明ってあるかな 100個中99個だから99/100としか言ってるようにしか見えないけど.”(by 確率論の専門家さん(2016/07/03))(^^ (>>486より再録) 過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記) (参考確率論の専門家さん ID:f9oaWn8A) スレ20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/519- 519 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 522 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 528 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である. もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない 532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1563282025/811
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s