[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む73 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む73 http://rio2016.5ch.net/test/read.cgi/math/1563282025/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
479: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/07/23(火) 07:22:12.96 ID:Iq5QMAZ/ >>474 補足 あと、下記が参考になる (なぜ、mathoverflow>>465 の手法が成立たないのか? ”CONGLOMERABILITY”が成立ってないというのが、数学DR Alexander Pruss氏の指摘(2013)で、それを2018年の著書で詳しく解説している) スレ65 https://rio2016.5ch.net/test/read.cgi/math/1557142618/750-754 https://books.google.co.jp/books?id=RXBoDwAAQBAJ&pg=PA77&lpg=PA77&dq=%22conglomerability%22+assumption+math&source=bl&ots=8Ol1uFrjJQ&sig=ACfU3U1bAurNGJm5872wDblskzsSgsU0iA&hl=ja&sa=X&ved=2ahUKEwioiPyV_IPiAhXHxrwKHUeaArUQ6AEwCXoECEoQAQ#v=onepage&q=%22conglomerability%22%20assumption%20math&f=false Infinity, Causation, and Paradox 著者: Alexander R. Pruss Oxford University Press, 2018 P75 (抜粋) 2.5.3 COUNTABLE ADDITITVITY AND CONGLOMERABILITY (引用終り) (mathoverflowの”conglomerability”関連箇所) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Dec 9 '13 (抜粋) (Alexander Pruss氏) <12> (抜粋) The probabilistic reasoning depends on a conglomerability assumption・・ But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the conglomerability assumption is appropriate. A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion). http://www.mdpi.com/2073-8994/3/3/636 http://rio2016.5ch.net/test/read.cgi/math/1563282025/479
483: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/07/23(火) 07:33:45.14 ID:Iq5QMAZ/ >>482 補足 これには、全部裏付けがあるよ(下記) >>465 >>474 >>479 だが あるレベルに達しないと理解できない数学がある 例えば時枝不成立 確率過程論の知識がないと、時枝不成立がなかなか理解できないんだなと このスレの落ちこぼれ達を見ていると、つくづくそう思うよw(^^; http://rio2016.5ch.net/test/read.cgi/math/1563282025/483
486: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/07/23(火) 08:14:24.84 ID:Iq5QMAZ/ >>479 補足 過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記) (参考:確率論の専門家さん ID:f9oaWn8A と ID:1JE/S25W) スレ20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/519- 519 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:27:11.14 ID:f9oaWn8A [4/13] >>518 X=(X_1,X_2,…)をR値の独立な確率変数とする. 時枝さんのやっていることは 無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める. 無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める. P(f(X)=X_{g(X)})=99/100 ということだが,それの証明ってあるかな? 100個中99個だから99/100としか言ってるようにしか見えないけど. 522 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 22:40:29.88 ID:f9oaWn8A [5/13] 面倒だから二列で考えると Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布 実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると P(h(Y)>h(Z))=1/2であれば嬉しい. hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明 528 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:03:57.29 ID:f9oaWn8A [8/13] おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R,B(R))の可測関数である. もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない 532 返信:132人目の素数さん[] 投稿日:2016/07/03(日) 23:15:17.47 ID:f9oaWn8A [11/13] >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1563282025/486
503: 132人目の素数さん [sage] 2019/07/23(火) 23:27:58.58 ID:Z0BnCkNP >>479 > ”CONGLOMERABILITY”が成立ってないというのが、数学DR Alexander Pruss氏の指摘 哲学先生は確率変数を誤解しているのでその指摘は当たらない 100枚中1枚のハズレくじを引く確率の計算にCONGLOMERABILITYもクソも無い http://rio2016.5ch.net/test/read.cgi/math/1563282025/503
635: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/27(土) 09:05:49.95 ID:tVcqhmZw >>631 哀れな素人さん、どうも。スレ主です。 >この馬鹿は未だに時枝戦略成立と思っているらしい(笑 同意です そして、サイコパス以外に居たかもしれない時枝戦略成立派は、下記を読んで、撤退したようですね(^^; (引用開始) >>482 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/07/23(火) 07:30:20.85 ID:Iq5QMAZ/ [13/16] ・確率過程論で、可算無限個の確率変数の族X1,X2,・・・(時枝記事後半にある通り) ・IID(同率同分布)で、コイントスで、{0,1}を入れた ・任意のiで、Xiは確率1/2で、0か1かの値を取る ・ところが、時枝の手法では、ある有限のDがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという ・これは矛盾である (過去なんども繰り返し述べてきた通りだが、確率過程論の知識がないと、時枝不成立がなかなか理解できない) >>483 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/07/23(火) 07:33:45.14 ID:Iq5QMAZ/ [14/16] >>482 補足 これには、全部裏付けがあるよ(下記) >>465 >>474 >>479 だが あるレベルに達しないと理解できない数学がある 例えば時枝不成立 確率過程論の知識がないと、時枝不成立がなかなか理解できないんだなと このスレの落ちこぼれ達を見ていると、つくづくそう思うよw(^^; (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1563282025/635
812: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/30(火) 11:40:19.49 ID:NVdqdEIy >>801 補足 >>「決定番号の大小比較の確率」 >まず、どの列の決定番号も独立同分布なら >それだけで上記の確率は求まる ほいよ (>>635より) (引用開始) >>482 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/07/23(火) 07:30:20.85 ID:Iq5QMAZ/ [13/16] ・確率過程論で、可算無限個の確率変数の族X1,X2,・・・(時枝記事後半にある通り) ・IID(同率同分布)で、コイントスで、{0,1}を入れた ・任意のiで、Xiは確率1/2で、0か1かの値を取る ・ところが、時枝の手法では、ある有限のDがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという ・これは矛盾である (過去なんども繰り返し述べてきた通りだが、確率過程論の知識がないと、時枝不成立がなかなか理解できない) >>483 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/07/23(火) 07:33:45.14 ID:Iq5QMAZ/ [14/16] >>482 補足 これには、全部裏付けがあるよ(下記) >>465 >>474 >>479 だが あるレベルに達しないと理解できない数学がある 例えば時枝不成立 確率過程論の知識がないと、時枝不成立がなかなか理解できないんだなと このスレの落ちこぼれ達を見ていると、つくづくそう思うよw(^^; (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1563282025/812
851: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/31(水) 07:37:06.70 ID:U/EDJXNy >>850 >「Dが一定」 下記の通り「時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという」だから 「Dが一定」である必要なし! (>>829より) 1)独立同分布(IID)を仮定しよう。具体的に、コイントスで、{0,1}を入れた(>>812) 可算無限個の確率変数の族X1,X2,・・・(時枝記事後半にある通り) で任意のi∈Nで、Xiは確率1/2で、0か1かの値を取る 2)ところが、時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという これは矛盾である(>>812) 3)独立同分布(IID)を仮定した瞬間、これで終りでしょw(^^ これには、全部裏付けがあるよ(下記) >>465 >>474 >>479 (過去なんども繰り返し述べてきた通りだが、確率過程論の知識がないと、時枝不成立がなかなか理解できないのだろう) >必ずXD=rD (>>831より) 時枝の設定は、次の通り スレ20 https://rio2016.5ch.net/test/read.cgi/math/1512046472/18- (抜粋) 過去スレ20 再録 http://rio2016.2ch.net/test/read.cgi/math/1466279209/2-7 1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. ・・・・ 列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はs^k(D)=rD」と賭ければ,めでたく確率99/100で勝てる. 確率1-ε で勝てることも明らかであろう. (引用終り) ここで、実数値rDは、(-∞,+∞)の範囲をカバー出来ていなければ、的中確率99/100など得られない だが、コイントスのIID 2値{0,1}のみとは、真っ向矛盾している コイントスのIID 2値{0,1}のみを仮定すれば、実数値rDで的中確率99/100など得られるはずがない! 「必ずXD=rD」というが、例えばrD=e^π 又はrD=πなどの実数値(上記時枝記事記載の通り)では、コイントスの2値{0,1}は的中できるはずがない!!(^^ QED http://rio2016.5ch.net/test/read.cgi/math/1563282025/851
861: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/07/31(水) 09:59:42.54 ID:/g9to0os >>860 問答無用!w(^^; (>>851より) 下記の通り「時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという」だから 「Dが一定」である必要なし! (>>829より) 1)独立同分布(IID)を仮定しよう。具体的に、コイントスで、{0,1}を入れた(>>812) 可算無限個の確率変数の族X1,X2,・・・(時枝記事後半にある通り) で任意のi∈Nで、Xiは確率1/2で、0か1かの値を取る 2)ところが、時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという これは矛盾である(>>812) 3)独立同分布(IID)を仮定した瞬間、これで終りでしょw(^^ これには、全部裏付けがあるよ(下記) >>465 >>474 >>479 (過去なんども繰り返し述べてきた通りだが、確率過程論の知識がないと、時枝不成立がなかなか理解できないのだろう) >必ずXD=rD (>>831より) 時枝の設定は、次の通り スレ20 https://rio2016.5ch.net/test/read.cgi/math/1512046472/18- (抜粋) 過去スレ20 再録 http://rio2016.2ch.net/test/read.cgi/math/1466279209/2-7 1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. ・・・・ 列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はs^k(D)=rD」と賭ければ,めでたく確率99/100で勝てる. 確率1-ε で勝てることも明らかであろう. (引用終り) ここで、実数値rDは、(-∞,+∞)の範囲をカバー出来ていなければ、的中確率99/100など得られない だが、コイントスのIID 2値{0,1}のみとは、真っ向矛盾している コイントスのIID 2値{0,1}のみを仮定すれば、実数値rDで的中確率99/100など得られるはずがない! 「必ずXD=rD」というが、例えばrD=e^π 又はrD=πなどの実数値(上記時枝記事記載の通り)では、コイントスの2値{0,1}は的中できるはずがない!!(^^ QED http://rio2016.5ch.net/test/read.cgi/math/1563282025/861
981: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2019/08/02(金) 00:07:21.61 ID:iEpfJmnQ 問答無用!w(^^; (>>851より) 下記の通り「時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという」だから 「Dが一定」である必要なし! (>>829より) 1)独立同分布(IID)を仮定しよう。具体的に、コイントスで、{0,1}を入れた(>>812) 可算無限個の確率変数の族X1,X2,・・・(時枝記事後半にある通り) で任意のi∈Nで、Xiは確率1/2で、0か1かの値を取る 2)ところが、時枝の手法では、あるD∈Nがあって、XDは確率1−ε(例えば99/100など)で、実数値rDを取るという これは矛盾である(>>812) 3)独立同分布(IID)を仮定した瞬間、これで終りでしょw(^^ これには、全部裏付けがあるよ(下記) >>465 >>474 >>479 (過去なんども繰り返し述べてきた通りだが、確率過程論の知識がないと、時枝不成立がなかなか理解できないのだろう) >必ずXD=rD (>>831より) 時枝の設定は、次の通り スレ20 https://rio2016.5ch.net/test/read.cgi/math/1512046472/18- (抜粋) 過去スレ20 再録 http://rio2016.2ch.net/test/read.cgi/math/1466279209/2-7 1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. ・・・・ 列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はs^k(D)=rD」と賭ければ,めでたく確率99/100で勝てる. 確率1-ε で勝てることも明らかであろう. (引用終り) ここで、実数値rDは、(-∞,+∞)の範囲をカバー出来ていなければ、的中確率99/100など得られない だが、コイントスのIID 2値{0,1}のみとは、真っ向矛盾している コイントスのIID 2値{0,1}のみを仮定すれば、実数値rDで的中確率99/100など得られるはずがない! 「必ずXD=rD」というが、例えばrD=e^π 又はrD=πなどの実数値(上記時枝記事記載の通り)では、コイントスの2値{0,1}は的中できるはずがない!!(^^ QED http://rio2016.5ch.net/test/read.cgi/math/1563282025/981
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s