[過去ログ]
現代数学の系譜 工学物理雑談 古典ガロア理論も読む68 (1002レス)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む68 http://rio2016.5ch.net/test/read.cgi/math/1560374890/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
26: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/06/13(木) 06:43:39.84 ID:tNmlg93R さて、次のHart氏PDFは、時枝記事の元ネタでしょうね http://www.ma.huji.ac.il/hart/ Sergiu HART The Hebrew University of Jerusalem (抜粋) http://www.ma.huji.ac.il/hart/#puzzle PUZZLES ・Choice Games http://www.ma.huji.ac.il/hart/puzzle/choice.html Some surprising results involving the Axiom of Choice, and also without it! http://www.ma.huji.ac.il/hart/puzzle/choice.pdf (A similar result, but now without using the Axiom of Choice.2 Consider the following two-person game game2:) P2 Remark. When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1, ・・・, 9}, respectively. ”independently and uniformly”が、独立同分布(IID)を含意 区間[0, 1]から、∀iで、任意の実数 xiを選べば、「ルベーグ測度は0」だから、的中確率も0だ 独立同分布(IID)で、”箱”つまり”i”の範囲は、有限あるいは無限どちらも同じく無関係だ よって、唯一の分布を考えれば良い。そして、繰返すが、区間[0, 1]から、任意の実を選べば、「ルベーグ測度は0」だから、的中確率も0だ (時枝記事は、区間[0, 1]→R全体だから、さらに的中は難しい) さて、∀i xi で確率0が、スタート地点になる!(最初はgoo!でなく、最初の確率は0だ) 時枝記事で、最初の1列の無限個の箱∀i xi で確率0 が、時枝記事の並べ変えを行うと、∃i xi で確率99/100になるという ”確率0”は、大学で学ぶ現代確率論(確率過程論)よりの結論 一方”∃i xi で確率99/100”は、数学セミナーの時枝記事よりの結論 ∃i xiの箱は、二つの異なる確率0と99/100と、二つの値を取ることになる(矛盾) つづく http://rio2016.5ch.net/test/read.cgi/math/1560374890/26
40: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 2019/06/13(木) 06:58:37.86 ID:tNmlg93R >>26 補足 スレ62 https://rio2016.5ch.net/test/read.cgi/math/1551963737/ 955 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/03/28(木) 21:24:02.18 ID:7L3ElMut [4/7] Sergiu Hart氏のPDF http://www.ma.huji.ac.il/hart/puzzle/choice.pdf P2 Remark. When the number of boxes is finite Player 1 can guarantee a win with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1, ・・・, 9}, respectively. ”independently and uniformly”が、独立同分布(IID)を含意 区間[0, 1]から、∀iで、任意の実数 xiを選べば、「ルベーグ測度は0」だから、的中確率も0だ 独立同分布(IID)で、”箱”つまり”i”の範囲は、有限あるいは無限どちらも無関係だ よって、唯一の分布を考えれば良い。そして、繰返すが、区間[0, 1]から、任意の実数を選べば、「ルベーグ測度は0」だから、的中確率も0だ (時枝記事は、区間[0, 1]→R全体だから、さらに的中は難しい) さて、∀i xi で確率0が、スタート地点になる!(最初はgoo!でなく、最初は確率0だ) 時枝記事で、最初の1列の無限個の箱∀i xi で確率0 が、時枝記事の並べ変えを行うと、∃i xi で確率99/100になるという ”確率0”は、大学で学ぶ現代確率論(確率過程論)よりの結論 一方”∃i xi で確率99/100”は、数学セミナーの時枝記事よりの結論 ∃i xiの箱は、二つの異なる確率0と99/100と、二つの値を取ることになる(矛盾) かつ ∃i xiの”i”については、そのときの決定番号との関係で、可能性としては、1〜∞の値を取り得る すると、1〜∞の値のどの”i”についても、二つの異なる確率 0と99/100と、二つの値を取ることになる(さらに矛盾) つづく http://rio2016.5ch.net/test/read.cgi/math/1560374890/40
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.040s