[過去ログ] 現代数学の系譜11 ガロア理論を読む17 [転載禁止]©2ch.net (747レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
53(2): 現代数学の系譜11 ガロア理論を読む 2015/11/29(日)08:02 ID:SasjpBzo(2/14) AAS
>>52
つづき
Every point of the Cantor set is also an accumulation point of the complement of the Cantor set.
For any two points in the Cantor set, there will be some ternary digit where they differ ? one will have 0 and the other 2.
By splitting the Cantor set into "halves" depending on the value of this digit, one obtains a partition of the Cantor set into two closed sets that separate the original two points.
In the relative topology on the Cantor set, the points have been separated by a clopen set. Consequently the Cantor set is totally disconnected. As a compact totally disconnected Hausdorff space, the Cantor set is an example of a Stone space.
引用おわり
省11
54(3): 現代数学の系譜11 ガロア理論を読む 2015/11/29(日)08:44 ID:SasjpBzo(3/14) AAS
>>53 つづき
totally bounded >>52
外部リンク:en.wikipedia.org
Totally bounded space
In topology and related branches of mathematics, a totally bounded space is a space that can be covered by finitely many subsets of any fixed "size" (where the meaning of "size" depends on the given context).
The smaller the size fixed, the more subsets may be needed, but any specific size should require only finitely many subsets.
A related notion is a totally bounded set, in which only a subset of the space needs to be covered. Every subset of a totally bounded space is a totally bounded set; but even if a space is not totally bounded, some of its subsets still will be.
省8
68(4): 現代数学の系譜11 ガロア理論を読む 2015/11/29(日)14:38 ID:SasjpBzo(10/14) AAS
>>66-67
どうも。スレ主です。
ありがとう
やっぱ、数学系の人は、思考が深いね(^^;
高校レベルで終わりとはいかない>>39
>有界であることは使っていいと思う。
正直、ルベーグ可測はあまり理解出来ていないが・・・
省12
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.044s