[過去ログ] 現代数学の系譜11 ガロア理論を読む17 [転載禁止]©2ch.net (747レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
215(3): 現代数学の系譜11 ガロア理論を読む 2015/12/06(日)10:02 ID:FrVQLg+h(3/10) AAS
>>201関連
いま見返すと、渕野先生の下記「公理的集合論」P4より
"超限再帰法により定義すると,{rα : α < c} はR のQ 上のHamel 基底になる(演習).
上のようにして構成したHamel 基底を用いることで,(Zorn の補題を用いて得られる) Hamel 基底
の存在の主張以上の興味深い事実が示せることを,次の節で見ることにする.ここでは, Hamel 基底
から,R のルベーグ非可測な部分集合が自然に定義できることを指摘しておくことにする."
補題1の証明で
省7
221(2): 現代数学の系譜11 ガロア理論を読む 2015/12/06(日)10:33 ID:FrVQLg+h(5/10) AAS
>>215 補足
Hamel 基底が話題になっていて、使えるかもと見たんだが
Steinhaus の定理がわからんし、スルーしてました
いま見ると、多少意味が分かるね
Steinhaus の定理というのは、直感的理解としては、「ルベーグ可測集合Aで、もし微小な連続部分があれば、その微小な連続部分を使って、差を取ることで、ε開近傍を原点0の周りに取ることができる」みたいな
それをもっと精密にして、”もし微小な連続部分があれば”を仮定せずに、ルベーグ可測という性質だけから、”差を取ることで、ε開近傍を原点0の周りに取ることができる”を主張するのかな?
そういうことを考えつくというのは、天才ですね
省1
224(4): 現代数学の系譜11 ガロア理論を読む 2015/12/06(日)10:45 ID:FrVQLg+h(6/10) AAS
>>220
どうも。スレ主です。
TAさん、レスありがとう
>Q~(S)=Cとなるような集合Sを取ったとき、それが"超越基底"になるとは限らないんだが。
>超越基底の要件である代数的独立性が保証されない。
それを保証するのが選択公理でしょうね
1.Q~に一つ超越数s1∈T(>>207)を取る。そして、超越拡大体Q~(s1)を作る
省5
283: 現代数学の系譜11 ガロア理論を読む 2015/12/13(日)06:57 ID:+cm1d/we(2/3) AAS
>>262 訂正します
>Hamel 基底も超越基底も、いまの現代数学の到達レベルでは、具体的にこれを構成することができない
自分で書いておきながら・・・>>224
”詳しくは、>>215の公理的集合論 特別企画 これから学ぶ人のために 渕野 数学,Vol.65, No.4 (2013), 411--420. のHamel 基底の構成などを参照してもらえればと思います”
外部リンク[pdf]:fuchino.ddo.jp
「超限帰納法を用いると, Hamel基底は,次のような“構成的” なやり方により作ることができる」P3*)
「上のようにして構成したHamel 基底を用いることで,(Zorn の補題を用いて得られる) Hamel 基底の存在の主張以上の興味深い事実が示せることを,次の節で見ることにする.」P4
省7
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s