[過去ログ] 現代数学の系譜11 ガロア理論を読む17 [転載禁止]©2ch.net (747レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
168
(3): 現代数学の系譜11 ガロア理論を読む 2015/12/05(土)08:47 ID:eSmTZwF/(5/25) AAS
>>163 補足

1.Q(S)=R が成立するということは、任意のQ上の代数的数a∈Aに対して、a=f(s1,s2,・・・) | fはQ係数多項式
  が成り立つということでは?
2.明らかに、Q(√2,π)>>163では、√2=f(π)という多項式は存在しない ∵両辺を自乗すれば、2=f(π)^2となって、πが超越数に反する
3.だから、超越次数が有限なら、純超越的かそうでないかの二択しかない
4.超越次数が無限なら? よく分かりません。が、「超越基底 B の濃度はその取り方によらず一定であることが証明できる」という
  外部リンク:ja.wikipedia.org 体の拡大
省2
172
(1): 2015/12/05(土)09:09 ID:g8DDoHnr(6/15) AAS
>>168
ふふスルドイねぇ物理出身のスレ主は。
>>128の『Q(S)=R』は、俺の考えでは解釈は2通りかな。
・悪い省略記法
・測度の等式のつもりだった
184
(2): 現代数学の系譜11 ガロア理論を読む 2015/12/05(土)18:37 ID:eSmTZwF/(15/25) AAS
>>181
>「 Q(S)=R 」はそのまま「 Q(S)=R 」の意味であって、
>「 m(Q(S))=m(R) 」などという意味ではない。
>(−ε,ε) ⊂ Q(S) が言えた時点で即座に Q(S)=R が従う。Q(S) は体だから。

ここを少し深掘りする

1.>>163>>168で書いたように、普通の教科書の拡大体の理論では、代数拡大があって、次に超越拡大という順で教える
2.で、超越次数が有限なら、純超越的かそうでないかの二択しかない。つまり、「Q(√2,π)は純超越的ではない」といえる
省3
190
(1): 現代数学の系譜11 ガロア理論を読む 2015/12/05(土)20:06 ID:eSmTZwF/(17/25) AAS
>>188 つづき

そんなこと*)とは

1.Q上の超越数がすべて代数的独立だから、ある有限の組み合わせ{s1,s2,・・・sn}⊂Sで、例えば√2=f(s1,s2,・・・sn)と代数的に実現できたとすれば
  f(s1,s2,・・・sn)は、Q係数の多項式で、2=f(s1,s2,・・・sn)^2となって、{s1,s2,・・・sn}が代数的独立に反するから(>>168の2に同じ)
2.だから、超越基底の無限個の組み合わせを考える必要がある
3.かつ、それは√2のみならず、すべての代数的な無理数すべてで実現できなければならない

正直よく分からないが、簡単に実現できる話でもないような気がする
省4
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.144s*