[過去ログ] 現代数学の系譜11 ガロア理論を読む17 [転載禁止]©2ch.net (747レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
このスレッドは過去ログ倉庫に格納されているため、キャッシュを表示しています。過去ログメニュー
103(4): 2015/12/03(木)18:46 ID:2V8kp7An(1/8) AAS
>>102
>あれ? 昨日は私(おっちゃん)宛てのレスはなしか。
>証明の重要な部分に論理の飛躍があったことになる。或いは、m(Q(S))=0 ではなかったのか。
飛躍に気づいてもらえたようなので特に返信はしなかったよ。
Sは可測ならゼロ集合だ。じゃあQ(S)はどうか。これは素人の俺には結構面白い問題だ。
>>97にも書いたが、Sの代数的な独立性によってはQ(S)=Rになる。測度無限大。
しかしSはゼロ集合で間違いない。
省3
112(3): 2015/12/03(木)22:33 ID:2V8kp7An(2/8) AAS
>>103
>7.よって、超越基底Sは零集合である。 ∵-εからεの区間に存在する超越基底Sの測度は、各区間Biの測度の可算和に等しいから。
ここがダメだと思う。先週議論したことと同じだ。
話を開区間I(ε) に含まれるSに限定しよう。
そうして>>108の第1段〜6段をスキップしよう。
I(ε)は可算個の半開区間Biに分割できる。
よって可算個Biの和だから測度は0だ。
省2
113(1): 112 2015/12/03(木)22:38 ID:2V8kp7An(3/8) AAS
> Sは非可算だから、測度が0に収束する可算の半開区間では覆えない。
訂正→『測度が0に収束する可算の半開区間では覆えることが証明できていない』
先週話したようにカントール集合のような特殊性(コンパクト)があれば話は楽だ。
しかし超越基底からはそういう良い性質を抽出できないんだよね。
114: 112 2015/12/03(木)22:39 ID:2V8kp7An(4/8) AAS
>>113
ah..日本語が変だが許してくれ。スレ汚してすまんかった。
117(1): 2015/12/03(木)23:15 ID:2V8kp7An(5/8) AAS
>>115
スレ主、I(ε)に含まれるSに限定して考えても同じことだよ。
スレ主が得た結果と同様にI(ε)でSは重ならない。
俺が主張したいのは、
・第0段〜第6段について今は議論しない。
・肝心の第7段が間違っている
ということなんだ。
省5
120(2): 2015/12/03(木)23:41 ID:2V8kp7An(6/8) AAS
>>119
スレ主は定義を誤解しているよ。
スレ主の論法だとI(ε)={-ε<x<ε}がゼロ集合になってしまう。
I(ε)に含まれている開区間もみんなゼロになってしまう。
基本的には、非可算な対象を可算個の任意に小さい区間では覆えないよ。
123(1): 2015/12/03(木)23:52 ID:2V8kp7An(7/8) AAS
>>121
おっちゃんお帰り。
すまんが、今は『I(ε)が任意に小さい可算個の区間では覆えない』ということについて議論を絞らせてくれ。
スレ主はゼロ集合の定義を誤解しているようだ。すぐに分かってくれるとは思うが。
126: 2015/12/03(木)23:59 ID:2V8kp7An(8/8) AAS
うむ、俺が間違っていた。スレ主、教えてくれた方(メンターだろう)、すまなかった。
任意のrに押し込めるという重要なポイントを完全に読み飛ばしていた。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 4.392s