スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
7(1): 2025/01/15(水) 11:22:28.47 ID:ZCTGHyhi(7/19) AAS
つづき
(完全勝利宣言!w)(^^
2chスレ:math スレ4 (775の修正を追加済み)
>>701-702 補足説明
>>760にも書いたが、
” a)確率上、開けた箱と開けてない箱とは、扱いが違う”>>701
をベースに、時枝記事>>1のトリックを、うまく説明できると思う
1)いま、時枝記事のように
問題の列を100列に並べる
1〜100列 のいずれか、k列を選ぶ(1<=k<=100)
k以外の列を開け、99列の決定番号の最大値をdmax99 とする
k列は未開封なので、確率変数のままだ
なので、k列の決定番号をXdkと書く
2)もし、Xdk<=dmax99 となれば、dmax99+1以降の箱を開けて
k列の属する同値類を知り、代表列を知り、dmax99番目の箱の数を参照して
省18
262(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2025/06/28(土) 11:06:19.57 ID:Om34p0pv(2/2) AAS
>>252 補足
箱入り無数目>>1 の 可算無限列
R^Nで s = (s1,s2,s3 ,・・・)
まず、長さLの有限列で考察して その後 L→∞ として 可算無限列を考察する
1)R^Lで s = (s1,s2,s3 ,・・,sL) とする
しっぽ同値のs'=(s'1, s'2, s'3,・・,sL)
当然 しっぽのsLの部分は共通で一致している
決定番号d は、d ≦ L
では、その一つ前の sL と s'L との比較はどうか?
箱に入れる数を 実数Rの任意とすると sL = s'L の確率は0
よって、d = L の確率1、d < L の確率0
そして、L→∞ とすると d = ∞ の確率1、d < ∞ の確率0
これは、有限dは存在するが、あたかも零集合で 確率計算に使えないのです
これは、L→∞において 分布が発散する 非正則分布(>>7-8)になるということ
2)補足で R→ 1〜1000 の整数を箱に入れたとする
省12
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.025s