[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
257
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 11/05(水)11:40 ID:K/Lr81ky(7/12) AAS
つづき

7. A proof of Fermat’s Last Theorem in PA?
We have founded the whole SGA for arbitrary sites, while individual proofs in number theory use only low degree cohomology of sites close to arithmetic.
Detailed bounds may suffice to get existing proofs into n-order arithmetic for relatively low n, as in Section 3.8.4. That might be a good context for such hard logical analysis as Macintyre (2011) begins for FLT.
More work might bound the constructions within a conservative extension of PA (Takeuti, 1978) to show some existing proof of FLT works essentially in PA.
It might help further reduce the proof to Exponential Function Arithmetic (EFA) as conjectured in (Friedman, 2010).
Such estimates are likely to be difficult.
This is no logical end run around serious arithmetic.
Not motivated by concern with logic, Kisin (2009b) extends and simplifies (Wiles, 1995), generally using geometry less than commutative algebra, visibly reducing the demands on set theory. And Kisin (2009a) completes a different proof of FLT by a strategy of Serre advanced by Khare and Wintenberger.

References
省3
260
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 11/05(水)11:52 ID:K/Lr81ky(8/12) AAS
>>255
Finite order arithmetic (Takeuti, 1987, Part II)
>>257
References
Takeuti, G. (1987). Proof Theory. Elsevier Science Ltd, 2nd edition.

竹内 外史先生だね
外部リンク:ja.wikipedia.org
竹内 外史(たけうち がいし、1926年1月25日 - 2017年5月10日)
外部リンク:en.wikipedia.org
Gaisi Takeuti (竹内 外史, Takeuchi, Gaishi; January 25, 1926 – May 10, 2017[1]) was a Japanese mathematician, known for his work in proof theory.[2]
省16
265: 現代数学の系譜 雑談 ◆yH25M02vWFhP 11/05(水)13:44 ID:K/Lr81ky(10/12) AAS
>>257
>Not motivated by concern with logic, Kisin (2009b) extends and simplifies (Wiles, 1995), generally using geometry less than commutative algebra, visibly reducing the demands on set theory. And Kisin (2009a) completes a different proof of FLT by a strategy of Serre advanced by Khare and Wintenberger.

下記だね
References
Kisin, M. (2009a). Modularity of 2-adic Barsotti-Tate representations. Inventiones Mathematicae, 178(3):587–634.
Kisin, M. (2009b). Moduli of finite flat group schemes, and modularity. Annals of Mathematics, 170(3):1085–1180.

これを、検索すると(2009a)
外部リンク:www.researchgate.net
Modularity of 2-adic Barsotti-Tate representations
December 2009Inventiones mathematicae 178(3):587-634
省10
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.043s