[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 76 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
806(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 10/28(火)14:53 ID:wRqXRloP(4/9) AAS
>>790
>君達は、なんで きちんと文献を読み込んで議論しないんだ?
>文献の読み込みができないんでしょ? 数学文献イップスだろ? オチコボレさんたちw (^^
ホイヨ
よめ!w ;p)
外部リンク:en.wikipedia.org
Bousfield class
In algebraic topology, the Bousfield class of, say, a spectrum X is the set of all (say) spectra Y whose smash product with X is zero:
X⊗Y=0. Two objects are Bousfield equivalent if their Bousfield classes are the same.
The notion applies to module spectra and in that case one usually qualifies a ring spectrum over which the smash product is taken.
省8
808(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 10/28(火)17:28 ID:wRqXRloP(5/9) AAS
>>806
>See also
>Bousfield localization
ホイヨ
よめ!w ;p)
おれも いま読んでる (^^
下記の”Localization of a category”が、重要キーワードだな
外部リンク:en.wikipedia.org
Localization of a category
In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces[clarification needed]. Calculus of fractions is another name for working in a localized category.
省9
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.049s