スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (347レス)
上下前次1-新
239(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/15(日)10:12 ID:lv2xCBEK(2/4) AAS
>>238 つづき
さて、用語が整備出来たところで
冒頭>>1に戻る
(引用開始)
時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^nを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
省19
240(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/15(日)10:29 ID:lv2xCBEK(3/4) AAS
>>239 つづき
s = (s1,s2,s3 ,・・・) と s'=(s'1, s'2, s'3,・・・ )∈R^N
を、一つの試行と考えたとき >>1のような 決定番号dを考えることができる
もし、問題列 s = (s1,s2,s3 ,・・・) について
決定番号d を 推測できる方法があれば
問題列で、d+1以降の数列のしっぽの箱を開けて
問題列の属する 同値類を特定して
同値類代表 s'=(s'1, s'2, s'3,・・・ )を知り
決定番号の定義から(>>1)
sd=s'd
省22
241(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/15(日)10:52 ID:lv2xCBEK(4/4) AAS
>>240 補足
>つまり、決定番号dは あきらかに →∞ に発散するので
専門的には、>>8 の 非正則な分布(発散する分布)を
使っていると言うことです
242: 06/15(日)10:55 ID:Eap/oGjV(1/4) AAS
>>238
まだ言ってるしw
そこじゃないんだよw 君が箱入り無数目の確率が何の確率か(つまり標本空間)を誤読してると言ってるのw
字読めないの? 小学校からやり直せ
243: 06/15(日)11:03 ID:Eap/oGjV(2/4) AAS
>>239
>ここまでが、一つの試行だ
はい、大間違い。
君の確率の用語確認は全くの無駄になったw
>例えばサイコロ投げの場合は、サイコロを投げるという実験そのものが試行であり
箱入り無数目の場合は、100面サイコロを投げる(=1〜100 のいずれかをランダムに選ぶ)という実験そのものが試行な
244: 06/15(日)11:07 ID:Eap/oGjV(3/4) AAS
>>239
>3)よって、全事象Ω(標本空間)は、
> 実数列の集合 R^N s = (s1,s2,s3 ,・・・)∈R^N
> を集めたものと見ることができる
試行を誤読してるので標本空間も間違う。
100面サイコロを投げることが試行だから正しい標本空間は{1,2,...,100}。
245: 06/15(日)11:10 ID:Eap/oGjV(4/4) AAS
>>240
試行なり標本空間なりを誤読したら、以降の考察はまったくのゴミ
246: 06/16(月)11:28 ID:F4qr5Fw1(1) AAS
>>238-241
そもそもd_i、D_iが確率変数のとき
P(d_i<=D_i)とP(d_i<₌D)は異なる
任意のε>0に対して、
P(d_i<D)<εだとしても
P(d_i<=D_i)<εは導けない
任意のε>0に対して、
P(D_i<D)<εだから
247(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/17(火)17:17 ID:5DT6XHJJ(1) AAS
>>240-241 補足
さて、箱入り無数目のトリック部分の
決定番号dの問題点について
さらに掘り下げてみよう
1)世に、確率・統計で”裾の重い分布”と称される分布がある(下記)
普通は、正規分布のような 裾の軽い分布が多く、平均値や標準偏差が考えられる
即ち、正規分布では、裾は指数関数的に減衰するのです
2)ところが、”裾の重い分布”とは 減衰が遅い分布であり
よって、平均値や標準偏差を持たない分布であったりするのです(下記のコーシー分布 ja.wikipedia ご参照)
3)さて、決定番号dは、”裾の重い分布”どころか、”裾の減衰しない分布”あるいは”裾の増大し発散する分布”
省22
248: 06/17(火)17:22 ID:imHVDh7R(1) AAS
>>247
>3)さて、決定番号dは、”裾の重い分布”どころか、”裾の減衰しない分布”あるいは”裾の増大し発散する分布”
> なのです。このような、分布では まっとうな 確率・統計の計算ができないことは 専門家には自明なのです
確率計算で決定番号の分布を一切使ってないのでまったく的外れ
> (ところが、一般の数学徒はご存じない)
君が記事を読めてないだけですよオチコボレさん 国語からやり直しましょう
249(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/18(水)13:52 ID:1ZjEJMOG(1) AAS
>>247 & >>239 補足
1)いま、出題の列 s = (s1,s2,s3 ,・・・) で
コイントスの 0,1 の2進値をランダム入れたとする
対するしっぽ同値列 s'=(s'1, s'2, s'3,・・・ )で
決定番号d のとき、(s1,s2,s3 ,・・,sd-1) と(s'1, s'2, s'3,・・,s'd-1)
で場合を数を考えると、sd-1≠s'd-1で無ければならないが、1からd-2は自由だから
2^(d-2)通り
2)dには上限なく 自然数全体を渡るから 決定番号の集合濃度は 2^Nで、アレフ ℵ1 非可算無限濃度
つまり、同値類は集合としてみた場合は、全体は非可算集合です
一方、有限の決定番号d の場合の数は 2^(d-2)で、有限です
省26
250: 06/18(水)14:36 ID:Qh/3AgjL(1/2) AAS
>>249
>補足
間違いを補足しても正しくならない。
試行(従って標本空間)を誤読しる間は決して正解には辿り着かないよオチコボレさん。
251: 06/18(水)14:41 ID:Qh/3AgjL(2/2) AAS
>>249
>結局 (99/100)x0=0 なのです
決定番号が自然数である確率は0ではなく1だから正しくは(99/100)x1=99/100
252(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/20(金)16:48 ID:S3g1Aii2(1) AAS
>>249 追加
1)いま、出題の列 s = (s1,s2,s3 ,・・・) で
箱入り無数目では、100列に並べ替える (mod 100を使えば良い)
勿論、2列でも可です (mod 2を使えば良い)
また、箱入り無数目の決定番号を使う 確率99/100が正しいならば
2列なら確率1/2となる
2)だが、出題の列 s = (s1,s2,s3 ,・・・) の並べ変えなど 面倒なことをせずに
ダミーの列 t = (t1,t2,t3 ,・・・) を、(回答者が勝手に作って)隣に作ればいいのです
ダミーの列の決定番号 dt に対し、問題の列の決定番号 ds として
ds ≦ dt となる確率は 1/2 だという*) ( *)箱入り無数目論法より>>2)
省26
253(1): 06/20(金)17:03 ID:5VJHkbCl(1/2) AAS
>>252
>ダミーの列の決定番号 dt に対し、問題の列の決定番号 ds として
> ds ≦ dt となる確率は 1/2 だという*) ( *)箱入り無数目論法より>>2)
誤読
なんど言えば分かるんだ? このオチコボレは
言葉が分からないなら国語からやり直せよ
254(1): 06/20(金)17:06 ID:5VJHkbCl(2/2) AAS
言葉が分からないオチコボレに数学は無理
まず言葉を学べ 小学校からやり直せ
255(1): 06/20(金)21:10 ID:v1Sk8AyC(1/2) AAS
>>252
> 出題の列 s = (s1,s2,s3 ,・・・) の並べ変えなど 面倒なことをせずに
> ダミーの列 t = (t1,t2,t3 ,・・・) を、(回答者が勝手に作って)隣に作ればいいのです
高卒は考えるのが苦手だからすぐ面倒くさがって、違うこと考える だから間違う
面倒くさがったら数学は絶対理解できない
必ずn列作ってどちらか選ぶこと
n列のうち他方より大きい列はたかだか1列しかない
どれをを選んでも当たらない、ということはない
当たらない列はn列のうちたかだか1列しかないのだから
選ばないから間違う
256(1): 06/20(金)21:20 ID:v1Sk8AyC(2/2) AAS
>>252
>決定番号dなる量は、本質的に発散している量であって非正則分布を成す
99列の決定番号の最大値Dなる量も、本質的に発散している量であって非正則分布を成す
したがってd<=Dなる確率が0とかいう高卒の主張は全くの誤り
dが確率変数ならDも確率変数であって定数ではない
ただ、箱入り無数目の確率はそんな難しいことを使っていない
なぜなら列siの決定番号diも、si以外の列の決定番号の最大値Diも、両方とも定数だから
100個の列siについてdi<=Diの真偽値は全部決まっている
そして、di<=Diが偽となるsiはたかだか1つしかない
だからその1つを選ばなければ当たる
省3
257(3): 06/22(日)09:09 ID:e5q/Q8+J(1) AAS
>>253-256
>dが確率変数ならDも確率変数であって定数ではない
ふっふ、ほっほ
確率変数→変数→ 変数vs定数 という 中学生レベルの連想ゲーム
大間違いですよ
確率変数は、基本的には関数ですよ
下記を百回音読してね
(参考)
外部リンク:ja.wikipedia.org
確率変数
省37
258: 06/22(日)16:59 ID:1MaLTl0f(1/2) AAS
>>257
>>dが確率変数ならDも確率変数であって定数ではない
>確率変数は、基本的には関数ですよ
s=(s1,…,s100)∈(R^N)^100
このとき、例えば、
d1(s)=d(s1)
D1(s)=max({d(s2),…,d(s100)})
はどちらもsの関数ですが、何か?
ふっふ、ほっほ
上下前次1-新書関写板覧索設栞歴
あと 89 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.027s