[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 65 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
594(1): 2022/04/25(月)07:16 ID:CGHIwjeU(5/8) AAS
>>593
つづき
これらの性質の一部は Frobenioid
の理論との関連で初めて意義を持つものになる。また、このエタール・テータ関数
は、IUTeich では、pTeich における標準的 Frobenius 持ち上げに対応する対象を定
める予定である。この Frobenius 持ち上げの類似物を微分することによって ABC 予
想の不等式が従うと期待している。このようにして不等式を出す議論は、
「正標数の完全体の Witt 環上の固有で滑らかな種数 g 曲線の上に Frobenius 持
ち上げが定義されていると仮定すると、
である。
省21
595(1): 2022/04/25(月)07:18 ID:CGHIwjeU(6/8) AAS
>>594
つづき
これは正にIUTeich で用いる予定の遠アーベル幾何
である。この理論の内容や「IUTeich 構想」との関連性については、論文の Introduction をご参照下さい。
ここで興味深い事実を思い出しておきたい。そもそも Grothendieck が有名な
「Faltings への手紙」等で「遠アーベル哲学」を提唱した重要な動機の一つは正に diophantus幾何への応用の可能性にあったらしい。つまり、遠アーベル幾何が(ABC 予想
への応用が期待される)IUTeich で中心的な役割を果たすことは、一見して Grothendieck の直感にそぐった展開に見受けられる。一方、もう少し「解像度を上げて」状
況を検証すると、それほど単純な関係にあるわけではないことが分かる。例えば、
Grothendieck が想定していた応用の仕方では、数体上の「セクション予想」によっ
て数体上の有理点の列の極限を扱うことが可能になるという観察が議論の要となる。
省18
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.033s