[過去ログ] 純粋・応用数学 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
31
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)16:50 ID:PhmwLbdr(4/14) AAS
メモ

外部リンク:bluexlab.tokyo
bluexlab
2019.10.03 2019.10.04MATH
パーフェクトイド空間(Perfectoid Spaces)とは?理論の概要と参考文献をご紹介【数論幾何の天才Peter Scholze氏の理論】
「パーフェクトイド空間って一体何?」、「最近、数論幾何の分野でよく聞くパーフェクトイド空間って?」
(抜粋)
こんな疑問に大学院でパーフェクトイド空間(Perfectoid Spaces)を研究していた僕がお答えします。

※このブログの他の数学関連の記事と同じように、この記事でも数学的な正確さよりも”なんとなくの雰囲気”重視で書いているため、数学的に不正確な表現や定義があることはご了承ください。

パーフェクトイド空間(Perfectoid spaces)への準備
省11
32
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)16:51 ID:PhmwLbdr(5/14) AAS
>>31
つづき

パーフェクトイド空間
では、パーフェクトイド空間とは何かと言うと、次のようなp冪の多項式で定義される図形のことを指します。

パーフェクトイド空間では、素数pでたくさん割れる多項式ばかりを考えることになります。

そうすることでいったい何が良いのかと言うと、

パーフェクトイド空間を考えると(使うと)コホモロジーが調べやすくなる
省7
34
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)16:52 ID:PhmwLbdr(7/14) AAS
>>31
これ、分り易いね
というか、分かった気にさせてくれる(^^;
40: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)23:14 ID:PhmwLbdr(13/14) AAS
>>31
おサルありがとう
転載しておくよ

0.99999……は1ではない その7
2chスレ:math
738 名前:132人目の素数さん[] 投稿日:2020/03/29(日) 17:48:14.25 ID:ReTOy/u3 [5/7]
2chスレ:math
>これ、分り易いね
>というか、分かった気にさせてくれる

外部リンク:bluexlab.tokyo
省15
87
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/02(木)22:27 ID:kD9YEDnI(2/8) AAS
>>31
追加

外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
数理解析研究所講究録 1200 巻 2001 年 39-47
Weight-monodromy conjecture over positive
characteristic local fields
東大数理・修士課程 伊藤哲史 (Tetsushi Ito)
Graduate School of Mathematical Sciences, University of Tokyo
1. INTRODUCTION
本稿ではウェイト・ モノドロミー予想について, 筆者が修士論文 [It] で得た結果を紹
省21
95
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/03(金)00:43 ID:DyKRdYgC(2/3) AAS
<ウェイト・ モノドロミー予想>

1.伊藤哲史先生>>87-88
「Langlands 対応などへの応用上は, 残された混標数の場合が重要であると考えら
 れる. しかし, この場合は, 様々な部分的な結果はあるものの, 一般には未解決である」
2.Perfectoid space >>94
「In mathematics, perfectoid spaces are adic spaces of special kind, which occur in the study of problems of "mixed characteristic"」
 で、"mixed characteristic"混標数の性質の良い空間を作って
 そこで、ウェイト・ モノドロミー予想を部分解決したってことかな?(>>31
3.「ウェイト・モノドロミー予想(weight-monodromy conjecture)とは,Deligneにより1970年の国際数学者会議において提出された予想である([D1]).」
「これは,完備離散付値体上の固有かつ滑らかな代数多様体のl進コホモロジーに定義されたモノドロミー・フィルトレーションの重み(weight)が純であるという予想として定式化されており,」
省11
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.132s*