[過去ログ] 純粋・応用数学 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
69
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/01(水)22:06 ID:RqQA8SNl(3/9) AAS
>>68
>工学化学で修士号も取れないのが純粋数学にクビ突っ込んだ気になって歯が全然立たないケースを言うのではない。

おまえ、数学ど素人だなww(^^

1)純粋数学と応用数学の厳密な区分はないよ!!ww(^^
 上げればきりがないが、昔々群論は純粋数学だったかもしれないが、いまどきは工学でも常識
 逆に、数学近接分野から純粋数学に取入れられ、フィールズ賞になったもの多数ある(例 下記 大栗博司のブログ)
 (下記以外でも、古典的な例だが、ディラックのδ関数が発展して、シュワルツの超関数論になった。もっと遡れば、ニュートンやオイラー、ガウスの時代は、数学と物理の垣根は低かったよ)
2)同じ1つの数学分野でも、数学屋と工学屋では見方が違う。数学屋は論文ネタとして見る。工学屋は、自分の目の前の問題に使えるかどうかを見る
 多分、物理屋や化学屋も同様で、工学屋に近いと思う。数学の論文が書けるかには、興味はない
3)なお、物理屋は、最新に数学に貪欲だと言われる
省10
70: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/01(水)22:07 ID:RqQA8SNl(4/9) AAS
>>69
つづき

今回の受賞者のひとりはスタニスラフ・スミルノフさんで、ある種の2次元の統計模型がスケール極限で共形対称性を持つことを示し、物理学者のジョン・カーディさんの予想していた公式に数学的証明を与えました。
場の量子論に数学的基礎を与えることは数理物理学の長年の課題ですが、2次元の共形場の理論では確実な進歩が起きています。前回の2006年のICMでフィールズ賞を受賞されたウェンデリン・ウェルナーさんの業績も2次元の共形場の理論に関係するものでした。
もうひとりの受賞者のセドリック・ビラニさんへの授賞対象は気体分子の運動論で、非平衡の状態からどのように平衡状態への移行が起きるのかの理解を進められたのだそうです。
物理学の提起する問題は、依然として数学の新しい発展を触発し続けているようです。
(引用終り)
以上
71
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/01(水)22:10 ID:RqQA8SNl(5/9) AAS
>>69 タイポ訂正

3)なお、物理屋は、最新に数学に貪欲だと言われる
 ↓
3)なお、物理屋は、最新の数学に貪欲だと言われる

ついでに、追加
佐藤幹夫先生が研究された ソリトンの代数解析は
(可積分系の数学に発展した)
物理と数学の境界の問題だったよね
72: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/01(水)22:15 ID:RqQA8SNl(6/9) AAS
>>71 追加

外部リンク:ja.wikipedia.org
佐藤幹夫 (数学者)
(抜粋)
ソリトンなど可積分系の研究、特に、ソリトン方程式のモジュライが無限次元グラスマン多様体になるという佐藤-佐藤の定理(夫人と共著)で有名。この定理は可積分微分方程式に対するガロア理論と見なすことができる。
講義録
佐藤幹夫述、野海正俊記「ソリトン方程式と普遍グラスマン多様体」上智大学数学講究録 No. 18(1984年)、上智大学数学教室

外部リンク:ja.wikipedia.org
佐藤理論(さとうりろん)は、佐藤幹夫によるソリトン方程式と解に関する理論である[1]。(京都大学数理解析研究所講究録388 1980[2],; 414, 1981[3])
KP方程式 (en)をはじめとする完全可積分方程式のソリトン解の τ関数は普遍Grassmann多様体上の点で、双線形方程式はPlucker関係式である。
省6
1-
あと 930 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.018s