[過去ログ] 純粋・応用数学 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
43: 2020/03/30(月)16:25 ID:SsupeAn8(2/2) AAS
それじゃ、おっちゃんもう寝る。
44: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/30(月)18:39 ID:zICzxEKY(1) AAS
おっちゃん、どうも、スレ主です。
同意です。おやすみなさい(^^;
45(6): 酒浸り 2020/03/30(月)21:51 ID:Y+NgZsAC(1) AAS
間違って踏んで仕舞った。未だに何故、 Surreal(1-0.999…)=0 & Game(1-0.999…)=ε≠0 に成るか
理由が分からない。Gameに順序性と演算規則性を補完してSurrealが構築されるならば
益々以て上記式のεはSurrealではないGameにしか成り得ない筈なのに、ε自体はSurrealだ!
分からない人に言うなら、これは実数と超実数。 Real(1-a)=0 & Hypereal(1-0.999…)=a≠0 ならば
此の a はRealではないHyperealにしか成り得ない。
一体、どうなってしまうのか?
ガチンコ数学学園
46(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/31(火)00:02 ID:zp6RcyFj(1/6) AAS
>>45
酒浸りさん、どうも。スレ主です。
あなたが言われているのは、下記ですか?(^^;
(参考)
外部リンク:ja.wikipedia.org
超現実数
(抜粋)
数学における超現実数(ちょうげんじつすう、英: surreal number)の体系は、全順序付けられた真のクラスとして実数のみならず(任意の正実数よりも絶対値が大きい)無限大および(任意の正実数よりも絶対値が小さい)無限小まで含む。
超現実数の体系は、四則演算(加減乗除)など実数が持つ多くの性質を共有しており、順序体を成す[注釈 1] 超現実数をフォンノイマン?ベルナイス?ゲーデル集合論(英語版) (NBG) において定式化するならば、超現実数体は(有理数体、実数体、有理函数体、レヴィ?チヴィタ体、準超実数体、超実数体などを含む)すべての順序体をその部分体として実現できるという意味で普遍的な順序体となる[1]。
超現実数は、すべての超限順序数も(その算術まで込めて)含む。あるいはまた、(NBGの中で構成した)超実体の極大クラスが超現実体の極大クラスに同型であることが示せる(大域選択公理(英語版)を持たない理論では必ずしもそうならないし、またそのような理論において超現実数体が普遍順序体になるとも限らないことに注意する)。
省24
47(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/31(火)00:28 ID:zp6RcyFj(2/6) AAS
>>45
>間違って踏んで仕舞った。未だに何故、 Surreal(1-0.999…)=0 & Game(1-0.999…)=ε≠0 に成るか
>分からない人に言うなら、これは実数と超実数。 Real(1-a)=0 & Hypereal(1-0.999…)=a≠0 ならば
下記1/3=0.333・・・ で定義するならば
両辺に3を掛けて
左辺 1/3*3=1
右辺 (0.333・・・)*3=0.999・・・
よって、1=0.999・・・ 成立ですが
ところで、無限小超現実数としてのεを考える
「0.999・・*:=0.999・・・−ε」という数を定義します
省15
48: 酒浸り 2020/03/31(火)01:11 ID:syVMD0lp(1/4) AAS
>>45一部で誤記振りホイホイしてしまったので当該箇所を訂正。
×
分からない人に言うなら、これは実数と超実数。 Real(1-a)=0 & Hypereal(1-0.999…)=a≠0 ならば
此の a はRealではないHyperealにしか成り得ない。
一体、どうなってしまうのか?
ガチンコ数学学園
○
分からない人に言うなら、これは実数と超実数。 Real(1-a)=0 & Hypereal(1-a)=e≠0 ならば
此の e はRealではないHyperealにしか成り得ない。
省3
49(2): 酒浸り 2020/03/31(火)03:17 ID:syVMD0lp(2/4) AAS
其う言えば当スレでは超現実数Wikipedia日本語版さえ貼ってなかったな、手間を掛けた。
>>47
スター[star]か。其れはナンバー[Number]ではなくニンバー[Nimber]か?
Star (game theory) - Wikipedia
外部リンク:en.wikipedia.org
Nimber - Wikipedia
外部リンク:en.m.wikipedia.org
>>en.Wikipedia
Sorry, In Japanese, please! I can't read English!
省3
50: 酒浸り 2020/03/31(火)03:23 ID:syVMD0lp(3/4) AAS
むぅ、己れ。何年か前迄はYahoo!Geocitiesに素人向け解説とは言え説いている頁が在ったのだが
URLを保存していた機種を大破全損してしまい復元閲覧も至難だ。不覚…。
51: 酒浸り 2020/03/31(火)04:12 ID:syVMD0lp(4/4) AAS
仕舞った。英単語の綴りも間違っていた、rは1つ切り綴りではなく2つ連ね綴りだった。
つまり超実数の英訳はhyperealではなくhyperrealだった、迷惑を掛ける。
52: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/31(火)07:48 ID:zp6RcyFj(3/6) AAS
>>49
>俺の英語力は魁!!男塾の田沢並みである。
<翻訳機能 下記 ご参考まで>
1.Google翻訳サイトがあるよ
外部リンク:translate.google.com
2.ブラウザでChrome使うとウェブページを翻訳できる (なお、私は右クリックで、翻訳を出して使うことが多いす)
外部リンク:support.google.com
Chrome の言語の変更とウェブページの翻訳
Chrome では、使用する言語を変更したり、ウェブページを翻訳したりすることができます。
3.Edgeでも、翻訳機能はあるみたい
省7
53: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/31(火)07:54 ID:zp6RcyFj(4/6) AAS
>>49
(引用開始)
>>47
スター[star]か。其れはナンバー[Number]ではなくニンバー[Nimber]か?
Star (game theory) - Wikipedia
外部リンク:en.wikipedia.org
Nimber - Wikipedia
外部リンク:en.m.wikipedia.org
(引用終り)
*を使ったとき、上記の”Star (game theory) - Wikipedia”は、全く知らなかったんだ(^^;
省1
54: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/31(火)10:46 ID:YIE+6BeO(1/6) AAS
>>46
>準超実数体、超実数体などを含む)すべての順序体をその部分体として実現できるという意味で普遍的な順序体となる[1]。
面白いね
(参考)
外部リンク:ja.wikipedia.org
抽象代数学における準超実数[要出典](じゅんちょうじっすう、 英: super-real number)は実数を拡張する数のクラスで、Dales & Woodin (1996) によって超実数を一般化するものとして導入され、主に超準解析・モデル理論・バナッハ環論において興味がもたれる。準超実数全体の成す体は、それ自身が超現実数体の部分体を成す。
目次
1 厳密な定義
2 注
3 参考文献
省6
55: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/31(火)10:50 ID:YIE+6BeO(2/6) AAS
>>46
> 13.1.3 コンウェイの実現との対応
コンウェイは、下記か
コンウェイ群の発見 (1968)は有名
弟子、ボーチャーズは、ムーンシャインインでフィールズ賞だね
外部リンク:ja.wikipedia.org
ジョン・ホートン・コンウェイ
ジョン・ホートン・コンウェイ(John Horton Conway, 1937年12月26日 - )はイギリスの数学者。現プリンストン大学教授。
仕事
コンウェイ群の発見 (1968)、ライフゲームの考案 (1970)、超現実数の発明 (1970)、巨大数のコンウェイ記法の発明などで知られる。
省1
56(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/31(火)11:06 ID:YIE+6BeO(3/6) AAS
>>46 補足
面白いね
外部リンク:ja.wikipedia.org
超現実数
(抜粋)
ω の冪
すなわち、任意の超現実数は
略
なる形に一意的に書くことができる。ここに、各 rα は非零実数で yα は超現実数の狭義単調減少列である。
しかし、この右辺の「和」は無限個の項(その長さは一般には任意の順序数となる)を持ち得る(もちろん 0 はこの係数列が空集合となる場合に相当し、最高次の冪を持たない唯一の超現実数である)。
省2
57(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/31(火)11:09 ID:YIE+6BeO(4/6) AAS
>>56 補足
>これは超現実数をハーン級数として定式化するための基礎となる。
面白いね
外部リンク:ja.wikipedia.org
超現実数
(抜粋)
ハーン級数
Alling (1987)(th. 6.55, p. 246) もまた超現実数体が実係数ハーン級数(英語版)体(各級数の和の値は超現実数として解釈する)に順序体として同型となることを証明した(この級数表現は、上述した超現実数の標準形に対応するものである)。これにより、超現実数をより従来的な順序体論的アプローチに結び付けることができる。
この同型により超現実数が写された先の体は、コンウェイ標準形における最高次項の冪指数の加法逆元を付値とする付値体である(例えば ν(ω) = ?1)。したがって、この体の付値環は有限超現実数(実数または実数に無限小成分を加えたもの)すべてからなる。
ここで付値として冪指数の符号を反転させるのは、コンウェイ標準形における冪指数が逆整列集合を成していることと、それに対しハーン級数が値群における(正順の)整列部分集合によって定式化されていることによるものである。
58(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/31(火)11:13 ID:YIE+6BeO(5/6) AAS
>>57
>超現実数体が実係数ハーン級数(英語版)体(各級数の和の値は超現実数として解釈する)に順序体として同型となることを証明した
外部リンク:en.wikipedia.org
Hahn series
(抜粋)
In mathematics, Hahn series (sometimes also known as Hahn?Mal'cev?Neumann series) are a type of formal infinite series.
They are a generalization of Puiseux series (themselves a generalization of formal power series) and were first introduced by Hans Hahn in 1907[1] (and then further generalized by Anatoly Maltsev and Bernhard Neumann to a non-commutative setting).
They allow for arbitrary exponents of the indeterminate so long as the set supporting them forms a well-ordered subset of the value group (typically {Q} or {R} ).
Hahn series were first introduced, as groups, in the course of the proof of the Hahn embedding theorem and then studied by him as fields in his approach to Hilbert's seventeenth problem.
Contents
省8
59: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/31(火)11:48 ID:YIE+6BeO(6/6) AAS
>>58 関連
英語のページが、実に充実しているね
外部リンク:ja.wikipedia.org
形式的冪級数
外部リンク:en.wikipedia.org
Formal power series
(抜粋)
Contents
1 Introduction
2 The ring of formal power series
省32
60(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/31(火)20:55 ID:zp6RcyFj(5/6) AAS
>>46
> 11 ゲーム
決定性公理が、”ゲーム”を使った定義になっていることに、長年不思議に思っていた
今回、下記コンウェイとか、超現実数のゲームとの関連を知って、なにか数学基礎論とゲームに繋がりがあることが、うっすらと理解できた気がするな(^^;
(参考)
外部リンク:ja.wikipedia.org
決定性公理
(抜粋)
決定性公理(けっていせいこうり、英: axiom of determinacy)とは、1962年にミシェルスキー(英語版)、ユゴー・スタインハウス(英語版)によって提出された集合論の公理である。もとの決定性公理はゲーム理論に言及し、可算無限の長さをもったある特定の二人完全情報ゲームについて(後述)、どちらかのプレイヤーは必ず必勝法を持つことを主張する。
決定性公理は公理的集合論の選択公理と矛盾する。決定性公理を仮定すると、実数の任意の部分集合について「ルベーグ可測である」「ベールの性質を持つ」「完全集合性(英語版)を持つ」ことが従う。とくに実数の任意の部分集合が完全集合性を持つことは「実数の部分で非可算なる集合は実数と同じ濃度を持つ」という弱い形の連続体仮説が成り立つことに換言される。
省10
61: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/31(火)20:56 ID:zp6RcyFj(6/6) AAS
>>60
つづき
歴史的なことを言えば、コンウェイは本項とは逆順に超現実数の理論を発展させたのであった。コンウェイは、囲碁の寄せを分析し、相互干渉しない小遊技の分析を繋ぎ合わせてそれらの選言和の分析とする何らかの方法があれば有用であるという実感を得ていた。
そうしたことからコンウェイはゲームの概念とそれらに対する加法演算を発明した。そこからさらに符号反転および大小比較の定義へと開発は動いて行き、ゲームからなるある種のクラスが興味深い性質を持つことをコンウェイは指摘している。
それが超現実数全体の成すクラスである。最終的に乗法演算を開発するに至って、超現実数の全体が実際にひとつの体を成すことおよびそれが実数の全体と順序数の全体をともに含む体系となることが証明された。
外部リンク:ja.wikipedia.org
ゲーム理論
(抜粋)
ゲーム理論(ゲームりろん、英: game theory)とは、社会や自然界における複数主体が関わる意思決定の問題や行動の相互依存的状況を数学的なモデルを用いて研究する学問である[2][3][† 1]。数学者ジョン・フォン・ノイマンと経済学者オスカー・モルゲンシュテルンの共著書『ゲームの理論と経済行動』(1944年) によって誕生した[† 2] [† 3]。
外部リンク:en.wikipedia.org
省6
62(2): 2020/04/01(水)04:24 ID:+nGXqagc(1/4) AAS
>>60
長年って具体的に何年?。
コピペ作業始めてから?。
上下前次1-新書関写板覧索設栞歴
あと 940 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.026s