[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
881
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)15:17 ID:86h80x0A(4/8) AAS
>>880
つづき

外部リンク:en.wikipedia.org
Multiplicative group
(抜粋)
In mathematics and group theory, the term multiplicative group refers to one of the following concepts:
・the group under multiplication of the invertible elements of a field,[1] ring, or other structure for which one of its operations is referred to as multiplication.
 In the case of a field F, the group is (F ? {0}, ?), where 0 refers to theZero element of F and the binary operation ? is the field multiplication,
・the algebraic torus GL(1).

Examples
省6
882
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)15:18 ID:86h80x0A(5/8) AAS
>>881
つづき

外部リンク:en.wikipedia.org
Group scheme
(抜粋)
Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems.
The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

Examples
・The multiplicative group Gm has the punctured affine line as its underlying scheme, and as a functor, it sends an S-scheme T to the multiplicative group of invertible global sections of the structure sheaf.
 Algebraic tori form an important class of commutative group schemes, defined either by the property of being locally on S a product of copies of Gm, or as groups of multiplicative type associated to finitely generated free abelian groups.
省4
888: Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)19:23 ID:/906omXv(5/12) AAS
>>880
>乗法群

今ごろそんなの調べてるの?w

貴様、今迄いったい何やってたんだ?w

>n を法とする整数の乗法群(英語版)は群Z/nZの可逆元が乗法についてなす群である。
>n が素数でないとき、0 の他に可逆でない元が存在する。

「可逆」の意味、分かってるか?
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.050s