[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
880
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)15:16 ID:86h80x0A(3/8) AAS
めんどくさいやつだな
そうあせるな(^^

円分体って、単純そうで、結構深いよね(゜ロ゜;
乗法群、Group scheme of roots of unity (^^

外部リンク:ja.wikipedia.org
乗法群
(抜粋)
数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する:
・体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群[1]。体 F の場合には、群は {F ? {0}, ?} である、ただし 0 は F の零元であり二項演算 ? は体の乗法である。
・代数的トーラス(英語版) GL(1).
省6
881
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)15:17 ID:86h80x0A(4/8) AAS
>>880
つづき

外部リンク:en.wikipedia.org
Multiplicative group
(抜粋)
In mathematics and group theory, the term multiplicative group refers to one of the following concepts:
・the group under multiplication of the invertible elements of a field,[1] ring, or other structure for which one of its operations is referred to as multiplication.
 In the case of a field F, the group is (F ? {0}, ?), where 0 refers to theZero element of F and the binary operation ? is the field multiplication,
・the algebraic torus GL(1).

Examples
省6
888: Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)19:23 ID:/906omXv(5/12) AAS
>>880
>乗法群

今ごろそんなの調べてるの?w

貴様、今迄いったい何やってたんだ?w

>n を法とする整数の乗法群(英語版)は群Z/nZの可逆元が乗法についてなす群である。
>n が素数でないとき、0 の他に可逆でない元が存在する。

「可逆」の意味、分かってるか?
省5
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.043s