[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
755
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/09(水)11:15 ID:nHmzRvjt(1/8) AAS
>>718
>正規部分群の手前の変換σ-1・H・σ自身の理解が不正確でした
>みなさんに、教えて頂きました
>ありがとう(^^

変換σ-1・H・σは、共役変換というんだけど(^^
下記の共役類wikipediaに詳しい
((編集されて変わることがあるので)スナップショットとして抜粋コピペするけど文字化けご容赦。原文リンク見た方が良いだろう)
元で書くと、σ-1・h・σだけど、積演算(・)が可換(アーベル)だと、
σ-1・h・σ=σ-1・σ・h=hなので
高校数学の範囲では可換ばかりだから、”何が、そんなにうれしいのか!?”となるのよw(^^
省16
756
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/09(水)11:16 ID:nHmzRvjt(2/8) AAS
>>755
つづき

性質
・G の 2 元 a と b が共役ならば、同じ位数をもつ。より一般に、a についてのすべてのステートメントは b = g^-1ag についてのステートメントに翻訳できる、なぜならば写像 φ(x) = g^-1xg は G の内部自己同型だからである。
・G の元 a に対して、 {a} が共役類であることと a が中心 Z(G) に属することは同値である。
・有限群の共役類の元の数は群の位数を割り切る。より精密には共役類 aG の元の数 |aG| は a の G における中心化群 CG(a) = { g ∈ G | ga = ag } の指数 [G : CG(a)] に等しい[4]。これは共役作用に関する軌道・固定群定理による。
・a と b が共役であれば、それらのベキ ak と bk も共役である[注釈 3]。したがって k 乗をとることは共役類上の写像を与え、どの共役類がその原像にあるかを考えることができる。例えば、対称群において、type (3)(2) (3-cycle と 2-cycle) の元の平方は type (3) の元であり、それゆえ (3) の power-up 類の 1 つは類 (3)(2) である。類 (6) は別の類である。
・群 G の位数が奇数ならば |G| ≡ k(G) (mod 16) が成り立つ (W. Burnside)[5]。
・有限群 H, K に対して k(H × K) = k(H) × k(K) が成り立つ[6]。
・有限群 G とその正規部分群 N に対して [G : N]^-1 k(N) <= k(G) <= k(G/N) k(N) が成り立つ[7]。
省2
765
(1): 2019/10/09(水)19:18 ID:gm3ls/Yz(6/7) AAS
>>755-759
理解を試すために質問するね

ガロア理論で「群の正規列」(正規部分群の列)って出てくるね

これ、なんで部分群の列じゃダメなの?

分かってる人は簡単にこたえられる質問だね
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.033s