[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
108(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/13(金)22:05 ID:Ct8Lh9wH(8/15) AAS
>>107
つづき
集合論
SNは通常の数学の宇宙であるという主張に正確な意味を与えることは可能である。すなわち、それはツェルメロ集合論のモデルである。
公理的集合論は元来1908年にエルンスト・ツェルメロによって開発された。ツェルメロ集合論は"通常の"数学を公理化することができるため、カントールによって三十年早く始められたプログラムを達成して、確実に成功した。
しかし、ツェルメロ集合論は公理的集合論および数学基礎論、特にモデル理論における他の研究のさらなる発展にとって不十分であった。
劇的な例として、上述の上部構造プロセスの記述はツェルメロ集合論においてそれ自身実行できないことが挙げられる。最終ステップとして、無限和 (infinitary union) としてのSを形成するための置換公理が必要である。
置換公理は、ツェルメロ=フレンケル集合論を形成するように1922年にツェルメロ集合論に付加された。この公理集合は今日最も広く受け入れられている。
そのため、通常の数学がSNにおいてなされるのに対し、SNの議論は"通常の"数学を越えてメタ数学の領域となる。
しかし、もし超冪集合論が持ち込まれた場合、上記の上部構造のプロセスそれ自体は明らかに超限帰納法のはじまりに過ぎない。
省8
109: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/13(金)22:06 ID:Ct8Lh9wH(9/15) AAS
>>108
つづき
圏論
圏論に歴史的につながる宇宙への別のアプローチの方法がある。これはグロタンディーク宇宙と呼ばれる。
大まかに言えば、グロタンディーク宇宙とは集合論の通常実行されるすべての操作を内部にもつ集合である。
例えば、グロタンディーク宇宙 U における2つの集合の和集合も U の内部にある。同様に、共通部分、順序対、冪集合などもまた U の内部にある。
これは上記の上部構造に類似している。グロタンディーク宇宙の利点は、それが実際の集合であって固有類ではないことである。
グロタンディーク宇宙の難点は、厳密さを欲するなら、グロタンディーク宇宙を捨てなければならないことである。
最も一般的なグロタンディーク宇宙 U の用途はすべての集合の圏を U で置き換えるものである。S ∈U のとき、U-large でないなら、集合S は U-small となる。
すべての U-small 集合の圏 U-Set は、すべての U-small の集合を対象として、それらの集合の間のすべての関数を射としてもつ。
省10
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s