[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
68(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)08:17 ID:cMDg8k3q(4/6) AAS
>>64
>一般の集合 ⊃ 推移的集合 ⊃ 順序数
(>>66より)
「正則性公理は全ての集合が整礎的であることを要求していて、だからZFCでは全ての集合がVに属する。
しかし、正則性公理を除いたり否定するような別の公理系を考えることも可能である(例えばen:Aczel's anti-foundation axiom)。
このような非整礎集合の集合論は一般的に採用はされていないが、研究する余地はある。」
(フォン・ノイマン宇宙 ja.wikipediaより)
なので、普通(ZFC内で)はベン図で議論してよいってことだな(^^
(引用終り)
ってことね
省5
69: 2019/09/12(木)09:26 ID:Wqo+hvYQ(1/2) AAS
バカ丸出し
70(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)11:08 ID:2dM7jvB/(1/7) AAS
メモ
外部リンク:www.nikkei.com
クラウドより速い「エッジ」、IoT時代の新インフラ
2019/9/12 4:30日本経済新聞 電子版
(企業報道部 堀越功、山田遼太郎、北郷達郎、清水孝輔)
[日経産業新聞 2019年9月5日付を再構成]
(抜粋)
データをクラウドで集中管理せず、末端の機器や施設でデータ処理する「エッジコンピューティング」の活用が広がっている。自動運転などあらゆるモノがネットにつながる「IoT」時代になると、データをいかに速く処理するかが求められているからだ。データ社会を支える新たなITインフラが幕を開けようとしている。
ドローン(小型無人機)が警備員になる――。そんな取り組みをKDDIとセコムなどが進めている。ドローンの機体に人工知能(AI)と高精細な4Kカメラ、全地球測位システム(GPS)を搭載。ドローンが不審者を検知して、その情報を警備会社のシステムに知らせる仕組みだ。
「AIの活用場所を広げるのに、クラウドだけでは限界がある」。KDDIなどと開発に取り組むAIスタートアップ、アラヤ(東京・港)の金井良太最高経営責任者(CEO)は力説する。アラヤによると、クラウドを介したAI解析より遅延を10分の1以下に抑えられるという。瞬時の判断が問われる警備や自動運転車だとこの差は大きい。
省3
71(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)11:09 ID:2dM7jvB/(2/7) AAS
>>70
つづき
■宇宙から画像送信
宇宙でエッジを導入する動きも出ている。宇宙航空研究開発機構(JAXA)は、宇宙船で撮影した画像の中から、カメラに内蔵するAIで適切な画像を選んで地球に送る検討を始めた。カメラに内蔵したAIで、1秒当たり画像30枚の良しあしを判断できる。ソフトウエアの検証は終わり、現在はハードウエアの小型化に取り組んでいる。
▼エッジコンピューティング 情報端末や制御機器でデータを処理したり、モノや利用者に近いエリアにサーバーを分散配置して情報処理したりすること。エッジは「端」を意味し、ネットワークを介して幅広いエリアの情報処理を集中して行うクラウドコンピューティングの限界から生まれた。
あらゆるモノがネットにつながる「IoT」の到来で、膨大なモノから大量のデータが生成されつつある。大量のデータをクラウドで処理すると2つの課題が生じる。ネットワークを介してクラウドまでデータ転送する際に時間がかかってしまう点と、データの転送コストが膨れ上がる点だ。
一方、エッジコンピューティングはデータの転送距離が短いため、ほぼリアルタイムで処理結果を現場に戻せる。データの転送コストも抑えられる。
■集中と分散繰り返す
省3
72: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)11:10 ID:2dM7jvB/(3/7) AAS
>>71 補足
”■集中と分散繰り返す
ITインフラはメインフレームによる集中処理から、パソコンや小型サーバーへの移行、その後クラウドの台頭と、集中と分散を繰り返してきた歴史を持つ。クラウドではIBMやアマゾン・ドット・コムなど米国企業が世界を席巻した。
エッジにより分散化の波が再び起きつつある。欧米や中国企業も動き出しているが、覇者はまだいない。日本勢が世界で存在感を高められるか注目される。”
いやいや
面白いですねw(^^
73(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)11:19 ID:2dM7jvB/(4/7) AAS
>>68 追加
外部リンク:kururu.hatenablog.com/entry/20060608/1149748301
kururu_goedel’s diary 2006-06-08
正則性公理
(抜粋)
haskellもプログラミングにおける型理論もわかりませんが、正則性公理が型に通じているというのは多分鋭い考察です。ゲーデルがLの構成について講義したときに、まず最初にRから始めるバージョンをやったらしいです。そうすると、ラッセルの型理論に近い形で広がっていきます。
事実、ゲーデルはLの構成をラッセルの理論の拡張だと思っていたようです。これは、このあたりの歴史の本を見ると出ています(=ソース探すの面倒だから各自でお願い)。
もっとも、ZFCの発想自体がラッセルの型理論とは全く相容れないような気もするんですが。ま、ともかく。
むしろ言及したいのは「この公理ってないほうが」の部分でありまして。正則性公理がある意味adhocな公理であることは間違いないです。そして、そのことを攻撃するのは論理的には全く正しいし、ない方が楽しいかもねと言われればおき得ることの範囲が広がるんだから確かにそうかもしれないとしか言いようがありません。
ですが、正則性公理が現代集合論ではとても強力に使われていることだけは主張しておいたほうが良いかと思います。
省4
74(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)12:05 ID:2dM7jvB/(5/7) AAS
>>73 追加
外部リンク:ja.wikipedia.org
整礎的集合
(抜粋)
整礎的集合(せいそてきしゅうごう、well-founded set)とは、空集合に和集合演算やべき集合演算などの集合演算を繰り返し施すことにより得られる集合である。
集合の階数
整礎的集合 x に対して、x ∈ Vα + 1 をみたす最小の順序数 α を x の階数(rank)といい、これを rank(x) で表す。
rank(x) = sup {rank(y)+1 | y ∈ x} が成立する。
正則性公理と整礎的集合
正則性公理を用いると、すべての集合が整礎的であることが示される。したがって、すべての集合に階数が定義される。
75(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)13:33 ID:2dM7jvB/(6/7) AAS
>>74 追加
(>>36より再録)
・(>>31より)∈−順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より)
だから、この場合は”x ∈ y → x ⊂ y ”成立
(引用終り)
順序というのは、すべからく、推移律を満たすものである(下記)w(^^;
外部リンク:ja.wikipedia.org
順序集合
(抜粋)
定義
省12
76: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)14:04 ID:2dM7jvB/(7/7) AAS
メモ
外部リンク:style.nikkei.com
ブックコラム NIKKEI STYLE
パソコンも計算間違い 0.1+0.1+0.1=0.3じゃない!?
『文系プログラマーのためのPythonで学び直す高校数学』から
2019/9/12
(抜粋)
「コンピューターの計算に間違いはない!」と信じている人は多いのでは? 今や当たり前のように身の回りの機器に組み込まれるようになったコンピューターですが、実は“苦手”とする計算があるのです。
今回は谷尻かおり『文系プログラマーのためのPythonで学び直す高校数学』(日経BP)から、担当編集者が選んだ“ちょっと面白いコンピューターの計算間違いの話”をご紹介します。
■コンピューターは“小数”の計算が苦手
省3
77(1): 2019/09/12(木)19:30 ID:0bjYSisu(5/6) AAS
>>66
>普通(ZFC内で)はベン図で議論してよいってことだな
これはヒドイw
>>68
>非整礎集合の集合論を考えていたのか
これもヒドイw
{{{}}}(順序数どころか推移的集合でもない)
のどこが非整礎集合かよwwwwwww
省13
78(1): 2019/09/12(木)19:31 ID:0bjYSisu(6/6) AAS
>>75
>∈−順序は、推移的
>順序というのは、すべからく、推移律を満たすものである
そもそも全ての集合に∈−順序がある
(つまり、全ての集合が
「∈ がその上で整列順序になる集合」)
というのが根本的誤解
どんだけ底抜けの馬鹿なんだ?w
79: 2019/09/12(木)21:37 ID:Wqo+hvYQ(2/2) AAS
もうサルは黙ってろよ
アホは発言禁止
80(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)23:25 ID:cMDg8k3q(5/6) AAS
おサルが二匹、踊ってくれるのか? ありがとう by サル回しのスレ主より(^^
81(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/12(木)23:53 ID:cMDg8k3q(6/6) AAS
>>77-78
言い訳必死だな、サルはw(^^
・∈−順序は、公理的集合論ZFCの目玉の重要キーワードでしょ?
これで、帰納法及び超限帰納法が可能になるんだ
・フォン・ノイマン宇宙(>>67)も、重要キーワードでしょ?
「V=WF ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す」
そして、フォン・ノイマン宇宙で、学部数学なら展開できる
フォン・ノイマン宇宙では、∈−順序が成り立ち、∈が推移律を保つ
・推移律:x∈y∈z で、ここでxはyの任意の元として、xに対し∀x∈zが成立→即y⊂z成立 かつ x⊂z成立
・これで(フォン・ノイマン宇宙で)、ベン図に反例はない
省5
82(2): 2019/09/13(金)00:12 ID:T2CuI5jY(1/4) AAS
これテンプレに入れとけサル
数学板の名物になるぞw
>>842
>Ω ⊂ R^N と Ω ∈ R^N はまったく別ものである
「まったく別もの」ではない
詳しくは、>>832の「ZFC公理系について:その1(及び2)」を読んでみな
簡単に書くと
1)二つの集合A,Bで、A ∈ B → A ⊂ B
∵ 集合Aの全ての元aは、集合Bの元だから
2)二つの集合A,Bで、A ⊂ B → A ∈ B
省3
83: 2019/09/13(金)06:47 ID:QEVZazxA(1/18) AAS
>>80
>∈−順序は、公理的集合論ZFCの目玉の重要キーワードでしょ?
いいやw
おまえ日本語が読めない馬鹿だろw
>フォン・ノイマン宇宙では、∈−順序が成り立ち、∈が推移律を保つ
>推移律:x∈y∈z で、ここでxはyの任意の元として、
>xに対し∀x∈zが成立→即y⊂z成立 かつ x⊂z成立
>これで(フォン・ノイマン宇宙で)、ベン図に反例はない
いいやw
省14
84(2): 2019/09/13(金)06:48 ID:QEVZazxA(2/18) AAS
>>81
>∈−順序は、公理的集合論ZFCの目玉の重要キーワードでしょ?
いいやw
おまえ日本語が読めない馬鹿だろw
>フォン・ノイマン宇宙では、∈−順序が成り立ち、∈が推移律を保つ
>推移律:x∈y∈z で、ここでxはyの任意の元として、
>xに対し∀x∈zが成立→即y⊂z成立 かつ x⊂z成立
>これで(フォン・ノイマン宇宙で)、ベン図に反例はない
いいやw
省14
85(1): 2019/09/13(金)06:53 ID:QEVZazxA(3/18) AAS
>>81
>数学者って人種は「おまいら高校の極限はゴマカシなんだ」みたいなのスキでね
>だから、もしベン図がゴマカシ(不正確と言ってもいい)だったら、
>きっとそういう人が出てくるはず
>「y∈zとしても、yの元で、zに含まれない元が存在するんだ。
> だから、ベン図に反例がある(あるいは描けない)」
>みたいなことをいう人がね
>でも、そんな人はおらんでしょ
ベン図は包含関係⊂しか表せない
要素∈の推移性なんて表しようがないw
省6
86: 2019/09/13(金)06:56 ID:QEVZazxA(4/18) AAS
>>82
数学板名物、ニワトリ集合論www
>1)二つの集合A,Bで、A ∈ B → A ⊂ B
>2)二つの集合A,Bで、A ⊂ B → A ∈ B
>3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
結論、集合=順序数
(ニワトリ曰く、「だって任意の集合は選択公理で整列可能だもん!」www)
87: 2019/09/13(金)06:58 ID:QEVZazxA(5/18) AAS
>>80
>おサルが二匹、踊ってくれるのか?
ニワトリ一羽、今日もトンデモ主張をコケコッコーw
さすが正規部分群を誤解する馬鹿だけのことはあるwww
上下前次1-新書関写板覧索設栞歴
あと 915 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.029s