[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
421(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)07:37 ID:dCfcIyTY(5/20) AAS
>>418
(引用開始)
したがって、Z/4Z \ 0 は乗法について閉じていない。
このことから、代数系 (Z/4Z, +, ×) は(4 を法とする剰余類環として)可換環を成すのみで、零因子が乗法逆元を持たないため体にはならない(位数 4 の有限体 F4 は存在するにも関わらず、である)。
(引用終り)
位数 4 の有限体 F4について(^^
「要は1の原始3乗根を添加した体がF4である」か
複素数まで考えないといけないんだ(^^;
外部リンク:br-h2gk.hatenablog.com/entry/finite_field_02
数学とその他の日々
省24
422(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)07:40 ID:dCfcIyTY(6/20) AAS
>>421 文字化け
1つ目としては、x^4?x=x(x?1)(x^2+x+1)の最小分解体だから、
↓
1つ目としては、x^4-x=x(x-1)(x^2+x+1)の最小分解体だから、
などね。wikipediaからのコピペでもよくおきるが
?の部分が-なんだ
まあ、原文見てください(^^
423(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)07:48 ID:dCfcIyTY(7/20) AAS
>>421 参考追加
外部リンク:ja.wikipedia.org
アルティン・シュライアー理論
(抜粋)
数学において、アルティン・シュライアー理論 (Artin?Schreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。
目次
1 アルティン・シュライアー拡大
2 アルティン・シュライアー理論
3 歴史的コメント
アルティン・シュライアー拡大
省11
424: 哀れな素人 2019/09/22(日)07:55 ID:CY/F9h+Q(1/12) AAS
>>404
依然として無限が分っていない中二のおっさん乙(笑
スレ主よ、サル石が、IDがばれるのを恐れて、
日付変更後と早朝の投稿をしなくなった(笑
IDが分ってしまうと、僕のスレに投稿できなくなるからだ(笑
425(1): 2019/09/22(日)07:58 ID:adVjb7k7(1/28) AAS
>>417
>>> 0,1,2,3,4,5,…使うよね?
>>> 同値類の集合でw(^^;
>>使わない
>単なる同値類の集合Z/nZで終わるなら、”使わない”だろうが
>剰余類環として、和・積の演算を考えるときに使うよ
使わない
剰余類同士の和、積は、剰余類であるから
剰余類の中の要素を考える必要がない
例
省9
426: 2019/09/22(日)08:04 ID:adVjb7k7(2/28) AAS
>>418
剰余類の加法、乗法の定義が
”きちんと定義されている”(well-defined)
という証明に、剰余類の要素が出てくるというのは、
剰余類の加法、情報の定義から当たり前である
そのことが
「剰余類の要素は、剰余類の集合の要素でもある」
ことの根拠になる、と思うのは只の馬鹿w
427(2): 2019/09/22(日)08:10 ID:CY/F9h+Q(2/12) AAS
ID:adVjb7k7
これはサル石(笑
こいつはいつもこういう数学用語の意味とか概念の話ばかり(笑
まるで大学一年生そのまま(笑
428(3): 2019/09/22(日)08:13 ID:adVjb7k7(3/28) AAS
>>420
>ここで、↓の上の集合で、外側の{}を外してみよう
>{・・,-2n,-n,0,n,2n,・・}, {・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・}, ・ ・ ・ ,{・・,-n-1,-1,n-1,2n-1,3n-1,・・}
> ↓全射
>・・,-2n,-n,0,n,2n,・・ , ・・,-2n+1,-n+1,1,n+1,2n+1,3n,・・ , ・ ・ ・ , ・・,-n-1,-1,n-1,2n-1,3n-1,・・
>要するに、
>↓の上側は、Zの部分集合で、0 + nZ, 1 + nZ, ・ ・ ・ , (n - 1) + nZたちになる
>↓の下側は、Zの元たち
>つまり、↓の上側は、Zの部分集合の集まりで、そこに属する元から、Zの元に対する自然な対応(写像)が存在する
写像は存在しないw
省14
429(5): 2019/09/22(日)08:13 ID:CY/F9h+Q(3/12) AAS
サル石よ、これを解いてみ(笑
以前このスレでやった問題だから解けるだろう(笑
100枚の宝くじを売り出すとし、
そのうち1枚だけが当たりくじだとする。
但し、そのうち99枚をAの売り場で売り出すとし、
残りの1枚をBの売り場で売り出すとする。
1 Aの売り場に宝くじが入っている確率と、
Bの売り場に宝くじが入っている確率は、それぞれいくらか。
2 AとBのどちらで買った方が当たる確率が高いか。
ちゃんと理由を述べて解いてみ(笑
430: 2019/09/22(日)08:17 ID:adVjb7k7(4/28) AAS
>>421-423
1は集合論から話をそらそうと必死wwwwwww
F4はZ/4Zとは加法、乗法が異なる
加法、乗法の表を書いてごらん
馬鹿でもわからざるを得ないからwww
アルティン・シュライヤーとかほざくのはそれからだ
431: 2019/09/22(日)08:19 ID:adVjb7k7(5/28) AAS
>>427
私は君の居るスレには書かないから安心して蟄居したまえ
>>429
つまらんので黙殺 さっさと自分の巣に帰れ アホウw
432(1): 2019/09/22(日)08:24 ID:CY/F9h+Q(4/12) AAS
そら見ろ、お前は具体的な問題は何一つ解けない(笑
手元に数学の本や辞典を置いて、
それを見ながらスレ主に噛みついているだけ(笑
お前は知性も精神年齢も中高生のままのアホ(笑
433: 2019/09/22(日)08:44 ID:adVjb7k7(6/28) AAS
>>432
>>429の問は、1に答えてもらえw
ここで俺様にイジメられて凹んでるからな
貴様の巣で暴れさせてやってくれ
もうここには返さなくていいからw
434(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)08:45 ID:dCfcIyTY(8/20) AAS
>>427
哀れな素人さん、どうも。スレ主です。
>こいつはいつもこういう数学用語の意味とか概念の話ばかり(笑
>まるで大学一年生そのまま(笑
同意
そして、大学一年生の4月から5月そのまま(笑
まるで高校数学レベル
435(1): 2019/09/22(日)08:46 ID:CY/F9h+Q(5/12) AAS
逃げずに>>429に答えてみろ(笑
中学生レベルの問題なのに、解けないのか(笑
436: 2019/09/22(日)08:48 ID:adVjb7k7(7/28) AAS
>>434
集合論の初歩の初歩である∈と⊂の意味すら誤解する1には数学は無理w
いい加減
・∈は、一般的に推移的関係でないこと
・任意の集合A,Bで、A∈B⇒A⊂Bは成立しないこと
の2点を受け入れて、死ねw
437(1): 2019/09/22(日)08:51 ID:adVjb7k7(8/28) AAS
>>435
1に答えてもらえw
ついでにいっとくが、その問題も回答も
モンティ・ホール問題の反駁にはならないぞ
理由?貴様の巣に集う連中に教えてもらえw
まあ、ここのアホの1には無理だろうなw
438(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/22(日)09:01 ID:dCfcIyTY(9/20) AAS
ほんと、コケコッコー(おれ)もレベル低いけど、おサルも低レベルだな〜w(^^
(つーか、いまふと思ったが、彼のサイコパス性格(屁理屈を使ってでも相手に反論しないと気が済まない)が出ているなー(>>2ご参照)。すげー、低レベルの屁理屈反論w(^^; )
>>425
>剰余類同士の和、積は、剰余類であるから
>剰余類の中の要素を考える必要がない
おサルには、大学レベルの高等数学が理解できないらしいw
まず、整数環Zの中の元に、和と積ありき
それを、集合概念をつかって、偶数の集合と奇数の集合に類別する
その剰余類の集合に、整数環Zの中の元の和と積とを使って、集合に対する和と積を定義する
この順番が、正統(canonical)。おサルは理解できないらしいなw
省21
439: 2019/09/22(日)09:06 ID:adVjb7k7(9/28) AAS
>>438
>まず、整数環Zの中の元に、和と積ありき
>それを、集合概念をつかって、偶数の集合と奇数の集合に類別する
>その剰余類の集合に、整数環Zの中の元の和と積とを使って、
>集合に対する和と積を定義する
>この順番が、正統(canonical)。
で、その定義がwell-definedだと証明できるから
結局、結果としての剰余類同士の和と積は剰余類であって
剰余類の要素がナマで出てくることは一切ない
1こそ大学数学が全然わかってないな
省4
440(1): 2019/09/22(日)09:10 ID:adVjb7k7(10/28) AAS
>>428
>あのさ自分勝手に、
>”{・・,-2n,-n,0,n,2n,・・}
>から
>・・,-2n,-n,0,n,2n,・・
>への対応”
>とか、反論になってないわな
では、{・・,-2n,-n,0,n,2n,・・}からどの自然数への対応か、示してごらんw
カッコを外すしか能がないテツガクシャの1には逆立ちしても無理だろw
>写像の概念をちょっと拡張して、拡張された写像概念を考えればいいだけのこと
省3
上下前次1-新書関写板覧索設栞歴
あと 562 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.039s