[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
342: 2019/09/19(木)19:33 ID:7GQwcv+X(5/9) AAS
>>335
>大学数学の”「同一視する」という考え方”、分かりますか〜w

★チガイの戯言w

>Z/nZ→Z:圏論の忘却函手みたいなのを考えて、Z/nZを忘れたらZに戻るってこと

忘却函手が何かも知らずに、忘却だけで脊髄反射してるなこの馬鹿w

ああ、忘却函手でサーチした結果を読まずにコピペとか要らないからwww
省8
343: 2019/09/19(木)19:33 ID:7GQwcv+X(6/9) AAS
>>338
> 1)A∈Bのとき、二項関係 A ∈R B が成立っているとする
> 2)さらに、A∈B∈Cのとき、二項関係 A ∈R B とB ∈R C のみならず、A ∈R Cも成立っているとする(推移律)
>  くどいが、間にBを挟んだ間接的な場合にも、A ∈R Cも成立っているとする

で?

まさか
「A ∈R C ならば A ⊂ C」
とかタワケたこと言わんだろうねw

君、A⊂Bの定義、知ってる?
∀x(x∈A⇒x∈B)
省4
344: 2019/09/19(木)19:34 ID:7GQwcv+X(7/9) AAS
>>339
モストフスキ崩壊補題を持ち出したところで
「A ∈R C ならば A ⊂ C」
は言えんので前スレ845の1)
2chスレ:math
>1)二つの集合A,Bで、A ∈ B → A ⊂ B
の正当化にはならんよ

したがって全く無意味

> 二項関係∈Rの意味で
> >>299のA社={第一事業部、第二事業部、第三事業部、AI研究所}で
省10
345: 2019/09/19(木)19:39 ID:7GQwcv+X(8/9) AAS
>>336
>サイコパス性格(屁理屈を使ってでも相手に反論しないと気が済まない)

サイコパスは 1 お前自身だよ
馬鹿のくせにリコウぶるな クソったれ
346
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)21:19 ID:MSw7Rbq1(10/14) AAS
おサルさん、踊ってくれてありがとう
お陰で、このガロアスレの勢い2位で 34です (^^

(参考)
外部リンク[html]:49.212.78.147
数学:2ch勢いランキング 9月19日 21:10:27

順位 6H前比 スレッドタイトル レス数 勢い
1位 ↑1 【未解決問題】奇数の完全数が存在しないことの証明5 195 39
2位 ↓-1 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 345 34
3位 ↑1 分からない問題はここに書いてね456 277 25
4位 ↓-1 0.99999……は1ではない 149 25
省10
347: 2019/09/19(木)21:24 ID:7GQwcv+X(9/9) AAS
>>346
「二つの集合A,Bで、A ∈ B → A ⊂ B」
とトンデモ馬鹿踊りしてるのは貴様一匹
348: 2019/09/19(木)22:43 ID:gcv8MKKh(2/3) AAS
>>335
>この視点では、Z/nZは無限集合
これは酷い
349: 2019/09/19(木)22:45 ID:gcv8MKKh(3/3) AAS
>>もし、Z/nZが完全な有限集合なら、どうやっても、無限集合とすることはできないよね
>なんで、無限集合にしたがるの?
ワロタ
350
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:15 ID:MSw7Rbq1(11/14) AAS
>>335 訂正と追加

<訂正>
Z/nZ→Z:圏論の忘却函手みたいなのを考えて、Z/nZを忘れたらZに戻るってこと
(Z/nZの要素の例えば、0 + nZ={・・,-2n,-n,0,n,2n,・・}の元からZ中の例えば2nに対応を付ければ良い)
 ↓
Z/nZ→Z:圏論の忘却函手みたいなのを考えて、Z/nZの同値類の構造を忘れたらZに戻るってこと
(Z/nZの要素の例えば、0 + nZ={・・,-2n,-n,0,n,2n,・・}の元2nからZ中の例えば2nに対応を付ければ良い)

<補足>
要するに、上記で言いたいことは、Z/nZの要素の各同値類の集合の要素と、集合Zとの元との対応がきちんとつくってこと
(例:上記の 0 + nZ∋2n→2n∈Z)
省12
351: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:17 ID:MSw7Rbq1(12/14) AAS
>>350
つづき

忘却関手をイメージすると、Grp の対象である群の台集合をそのまま Set の対象とし、Grp の射である準同型写像をそのまま Set の射に写す。集合の圏では演算は定義されていないので f(xy) = f(x)f(y) という等式は意味がなくなってしまう。
つまり、忘却関手とは群の圏から演算を取り去ってしまって、そのまま集合の圏の部分圏に写しだしたものと考えると良い。忘却関手の像の射の集合は集合の圏の射の集合の部分集合になっている。

したがって、忘却関手のイメージとは、群の圏を、集合の圏の部分圏へ写す関手と考える事ができる。

一方自由群は集合から作る事ができる。集合の圏の対象である文字集合をその上の自由群に対応させ、文字集合間の写像を対応する自由群間の準同型写像に対応させる関手(自由関手)を考えると、これは忘却関手とは反対方向の Set -> Grp の関手になる。
自由関手は忘却関手の左随伴である。したがって、自由関手と忘却関手の関係が分かれば、随伴の実例のひとつを理解できることになる。

外部リンク:m-hiyama.hatenablog.com/entry/20101021/1287620286
檜山正幸のキマイラ飼育記 (はてなBlog)
2010-10-21
省9
352
(2): 2019/09/19(木)23:24 ID:tlqWBAH8(1) AAS
スレ主よ、サル石が僕のスレを荒らしに来たから、
サル石がお前に毎日噛みついていることを
スレ民に教えてやった(笑

サル石がどういう男であるかも、すでに教えてある(笑

そのうちこいつは2chの全員から嫌われるようになるだろう(笑
353
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:56 ID:MSw7Rbq1(13/14) AAS
>>335

実数の部分集合として、次のようなものを考えよう
1)正の整数の集合Z+
2)負の整数の集合Z-
3)0 (これは元)
4)上記以外の有理数の集合Q’
5)超越数の集合Tr
6)上記1)〜5)以外の実数の集合A’(代数的数で無理数である実数より成る集合)

さて、
1)上記1)〜6)を要素とする集合をR#とする
省15
354: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/19(木)23:59 ID:MSw7Rbq1(14/14) AAS
>>352
哀れな素人さん、どうも。スレ主です。

>サル石がお前に毎日噛みついていることを
>スレ民に教えてやった(笑
>サル石がどういう男であるかも、すでに教えてある(笑

ありがとうございます
サル石は、キチガイサイコパスです(>>2ご参照)
まあ、世間のヒトには、キチガイサイコパスの生きた生態見本を見て貰えればと思いますw(^^;
355
(1): 2019/09/20(金)05:18 ID:DPgtgKl0(1/13) AAS
>>352
サル石なんて奴はいないよ

俺はそっちのスレには書いてない

ここの1が馬鹿なのは有名
数学板の人間は1と同じ人間とはみなしてない
畜生を尊敬する馬鹿はいないよw
356
(1): 2019/09/20(金)05:23 ID:DPgtgKl0(2/13) AAS
>>353
>R#={Z+,Z-,0,Q’,Tr,A’}
>集合R#={Z+,Z-,0,Q’,Tr,A’}は、そこに含まれる元としては、6個にすぎない
>では、R#を有限集合として良いのだろうか?
>その元Z+とかは明らかに無限集合であるのに

なんで集合Sの元が無限集合sだったら、
集合Sも無限集合にならなければいけない
と「発狂」するのか? 精神異常か?w

Z2={Even,Odd}
(Evenは偶数全体の集合、Oddは奇数全体の集合}
省2
357
(1): 2019/09/20(金)05:25 ID:DPgtgKl0(3/13) AAS
1が
「二つの集合A,Bで、A ∈ B → A ⊂ B」
を主張しつづける限り、トンデモとして
永久永劫、数学板読者から侮蔑嘲笑されるw
358
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/20(金)06:37 ID:ihE7M+Qz(1/9) AAS
>>355
サル石はいるよ(>>2
お前のこと
哀れな素人さんのスレ*)に書いているかどうかとは無関係に、サル石はいる
*) 現代数学はインチキだらけ
2chスレ:math

>>356
>なんで集合Sの元が無限集合sだったら、
>集合Sも無限集合にならなければいけない

(定義)有限集合を、有限個の元からなり、その元の祖先をたどっていったとき、必ず有限集合かアトムからなる集合と定義する
省9
359: 2019/09/20(金)06:51 ID:DPgtgKl0(4/13) AAS
1  「x∈y y∈zなら∈の推移律によりx∈zでy⊂z」
読者「x={},y={{}},z={{{}}}だと成り立たないって
   キューネンの「集合論」にはっきり書いてあるけど」
1 「(反論できずヤケクソで)新述語∈Rを導入して
   x∈y なら x ∈R y
x∈y y∈z なら x∈R z
   とすれば∈Rについては推移律が成立する」
読者「x ∈R z ならば、x⊂z、は云えないけど」

今ここw

---
省7
360: 2019/09/20(金)06:53 ID:DPgtgKl0(5/13) AAS
>>358
>(定義)有限集合を、有限個の元からなり、
  その元の祖先をたどっていったとき、必ず有限集合かアトムからなる集合と定義する
>それで終り。これは定義の問題だよ

1 独りよがりのボクちゃん定義を持ち出し自爆死

それじゃ大学数学は無理 諦めて首掻き切って死になw
あんた生きる価値も資格もないからwww
361
(1): 2019/09/20(金)07:12 ID:DPgtgKl0(6/13) AAS
1の今日の失言
「(定義)有限集合を、有限個の元からなり、
  その元の祖先をたどっていったとき、
  必ず有限集合かアトムからなる集合と定義する」

「有限集合を、有限個の元からなる集合と定義する」
と理解すればいいところをわざわざ
「その元の祖先をたどっていったとき、
 必ず有限集合かアトムからなる」
というバカげた文言を追加する点に
1の白痴ぶりが表れている
1-
あと 641 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s