[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
896
(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)22:31 ID:/906omXv(9/12) AAS
>>894
>二項方程式 X^5-a=0 が既約として、
>この方程式のガロア群は、位数5の巡回群になる
>と議論を単純化できる

そりゃ基礎体を円分体とした場合だろ?
基礎体がQだったらどうだい?

>方程式のガロア群では、普通は基礎体は
>Qに必要な1のベキ根は全て添加されているとして、
>議論を進める

おまえ、クンマー拡大も知らない馬鹿なのか?w
897
(1): Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)22:34 ID:/906omXv(10/12) AAS
外部リンク:ja.wikipedia.orgクンマー理論

「クンマー拡大(Kummer extension)とは、
 ある与えられた整数 n に対し
 次の条件を満たすような
 体の拡大 L/K のことを言う。
 ・K は、n 個の異なる1のn乗根(つまり、Xn−1 の根)を含む。
 ・L/K はexponent n の可換ガロア群を持つ。」
898: Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)22:41 ID:/906omXv(11/12) AAS
>>894
>その議論はちょっと違うと思うよ
>おまえ、なんか勘違いしていると思うよ

「と思う」お前が気違い

馬鹿の上に、妄想狂か?www
899: Mara Papiyas ◆y7fKJ8VsjM 2019/10/16(水)22:46 ID:/906omXv(12/12) AAS
X^5-1はQ上の既約多項式ではない
なぜなら以下のように因数分解できるから
(x-1)(x^4+x^3+x^2+x+1)
そして円分多項式φ5は
x^4+x^3+x^2+x+1
である
900
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)23:29 ID:OrOarbJT(11/12) AAS
>>889
(引用開始)
「Q(ζn)/Qの自己同型をσとすると、
 σ(ζn)は円分多項式Φn(x)=0の解となりますので、
 σ(ζn)=ζn^i (i∈(Z/nZ)×)と表せます。
 逆にi∈(Z/nZ)×に対してσiをσi(ζn)=ζn^iとすると
 σiはQ(ζn)/Qの自己同型を導くことが分かります。」
(引用終り)

??
 >>858より
省10
901
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/16(水)23:51 ID:OrOarbJT(12/12) AAS
>>896-897
なにを狼狽して誤魔化そうとしているんだ??w(^^;

 >>890より
(引用開始)
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
部分群に位数5と位数4の巡回群がある
(引用終り)

この「S_5の位数20の部分群 (12345)x(2354)」は
省27
902: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)00:04 ID:khSgay+Z(1/9) AAS
>>901
たしか、下記「第14章 可解置換群」がそうだったと思うよ
いや、書棚に本はあるけど、確認が面倒なんで、記憶で書くけど(^^
外部リンク[html]:www.nippyo.co.jp
ガロワ理論(下)
デイヴィッド・A. コックス 著 梶原 健 訳
発刊年月 2010.09
日本評論社
第4部 さらに続く話題
 第14章 可解置換群
省3
903
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)00:12 ID:khSgay+Z(2/9) AAS
>>901 追加

確か、元吉文男さん、参考文献に、エム・ポストニコフをあげていたね(^^
外部リンク[pdf]:www.kurims.kyoto-u.ac.jp
[PDF]5 次方程式の可解性の高速判定法 - 元吉文男 著 - ?1993 RIMS, Kyoto University

外部リンク:peng225.hate(URLがNGなので、キーワードでググれ(^^ )
ペンギンは空を飛ぶ
2018-03-07
5次方程式の解を巡る旅 ?5次方程式の可解性判定編?
(抜粋)
Galois理論
省3
904
(2): 2019/10/17(木)00:29 ID:rXxqe236(1/8) AAS
>この「S_5の位数20の部分群 (12345)x(2354)」は
> >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
>この5次方程式は、二項方程式ではない

x^3-2=0 という方程式のQ上のガロア群はS_3だが
1の3乗根を添加した体上ではC_3に縮小する。
一般3次方程式のガロア群はS_3だが
1の3乗根を添加してもS_3のまま。
しかし、べき根解法には1の3乗根は必要。
この話の類似が5次の場合にもあるんじゃないかな。
つまり、位数20のガロア群をもつ5次方程式は一般的には二項方程式ではないが
省1
905
(1): 2019/10/17(木)00:31 ID:rXxqe236(2/8) AAS
失礼。
Mara Papiyas氏が言うように
906: Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)05:27 ID:448PbhX4(1/12) AAS
>>900
>??

貴様は肝心なところを読んでない
自己同型! なぜ読まない?

貴様の引用したHPにもチャンと
同型写像について書かれてる
なぜ引用しない? 馬鹿かw
907: Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)05:31 ID:448PbhX4(2/12) AAS
>>904
1の5乗根を追加した体を基礎体としても
ガロア群がF_20となる場合がいかなるものか
についてはハイレベル数学人に任せるw

私の目的はあくまで馬鹿のローレベルな間違いを指摘することにあるw
908: Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)05:35 ID:448PbhX4(3/12) AAS
馬鹿はウマに食わせるほど数学書を買っても
ロクに読みもせず、読んだとしても
結果を覚えるだけで証明の論理を追わないから
いつまでたっても数学が理解できない

悪いことは云わない 数学は諦めろ
数学書はみな売っちまえ
貴様がやるべきことは断捨離だw
909
(2): Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)06:14 ID:448PbhX4(4/12) AAS
円分拡大の自己同型

原始5乗根をζで表す

同型写像として^2をとる

ζ、ζ^2、ζ^3、ζ^4
↓^2
ζ^2、ζ^4、ζ^6=ζ、ζ^8=ζ^3
↓^2
ζ^4、ζ^3、ζ^2、ζ
↓^2
ζ^3、ζ、ζ^4、ζ^2
省19
910: Mara Papiyas ◆y7fKJ8VsjM 2019/10/17(木)06:21 ID:448PbhX4(5/12) AAS
些細なことですが

>>905
氏はつけなくてもいいよ

例えば数学者について述べるとき、いちいち氏はつけないが
それを無礼だと咎める人はまあいない

私は別に数学者ではないが、名前に関しては
数学の慣習に沿って語っていただいて全然かまわない
911
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)07:09 ID:khSgay+Z(3/9) AAS
>>904
ID:rXxqe236さん、どうも。スレ主です。
レスありがとう(^^

(引用開始)
>この「S_5の位数20の部分群 (12345)x(2354)」は
> >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
>この5次方程式は、二項方程式ではない

x^3-2=0 という方程式のQ上のガロア群はS_3だが
1の3乗根を添加した体上ではC_3に縮小する。
一般3次方程式のガロア群はS_3だが
省25
912
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)07:37 ID:khSgay+Z(4/9) AAS
>>909
ぱち ぱち ぱち、拍手!
ご苦労さんw(^^;

さて、じゃおれも
(>>858より 下記”1のn乗根 (Joh著)”から)
「Q 上のベクトル空間と見た場合には ζ , ζ^2 ,..., ζ^n-1 が基底を張ることになります.
あれ, 1 は基底に無いのでしょうか?要りません.」
の話において

「1+ζ + ...+ζ ^n-1=0 がなりたつため, ζ , ζ^2 ,..., ζ^n-1 と 1 は独立ではないのです.」
は、ベクトル空間の基底で”1は不要”の話は、”1”みならず、任意のζ^m (1<=m<=n-1)の1つを基底から外すことが可能
省20
913
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/10/17(木)07:47 ID:khSgay+Z(5/9) AAS
>>912
> 1+ζ + ...+ζ ^n-1=0

これは、二項方程式 x^n - 1=0
で、
下記の根と係数の関係を適用すると
上記の方程式のn-1次の項が0であることから
導かれるね

外部リンク:ja.wikipedia.org
根と係数の関係
(抜粋)
省10
914
(3): 2019/10/17(木)08:05 ID:rXxqe236(3/8) AAS
>>912
ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。
定理として書いてある
「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」
は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。
(最小多項式)≠x^n-1 です。
あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。
Q上のベクトル空間としての次元もφ(n)なので、基底の個数もφ(n)個です。
915
(3): 2019/10/17(木)08:11 ID:rXxqe236(4/8) AAS
Mara Papiyasさんも勉強しながら書かれてる感じですが、スレ主さんとは違って
自分の頭を通して書いているなというのが分かります。
「アーベル群とアーベル群の直積はアーベル群にしかならないだろう」
とか、数学徒であれば誰でも気づくツッコミも入れてきます。
まえもそうでしたが、スレ主さんにはどうも半直積の概念がないように思えます。
1-
あと 87 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.029s